Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nanotechnology is a rapidly developing interdisciplinary field that combines branches of science such as engineering, physics, chemistry, biology, computer science, biotechnology, medicine, and pharmacy. Due to the rapid growth of interest in nanotechnology, new methods are needed to study the effects of nanoparticles on living organisms. In combination with in vitro and in vivo studies on vertebrate animals, valuable research data can be obtained through in vivo studies on invertebrates. Drosophila melanogaster (D. melanogaster), widely known as the fruit fly, has long been a cornerstone of genetic and developmental biology research. Its popularity owes to the short life cycle and approximately 13,600 genes, many of which are homologous to human genes. In recent years, the use of D. melanogaster has also been extended to the rapidly growing scientific field of nanotechnology. As a model organism, D. melanogaster offers a unique combination of genetic tractability and conservativeness of biological pathways, making it an ideal candidate for studying the biological impacts of nanoparticles. This article discusses the types of nanoparticles as a drug delivery system, one of their classifications, and use in pharmacy. It also reviews the growing role of D. melanogaster in nanoparticle research, highlighting its potential to provide insights mainly into nanoparticle toxicity, biodistribution, and therapeutic applications.
Czasopismo
Rocznik
Tom
Strony
art. no. 2
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Student Research Group at the Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 15 Poniatowskiego St., 40-055 Katowice, Poland
autor
- Student Research Group at the Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 15 Poniatowskiego St., 40-055 Katowice, Poland
autor
- Student Research Group at the Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 15 Poniatowskiego St., 40-055 Katowice, Poland
autor
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 15 Poniatowskiego St., 40-055 Katowice, Poland
autor
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 15 Poniatowskiego St., 40-055 Katowice, Poland
autor
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 15 Poniatowskiego St., 40-055 Katowice, Poland
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 15 Poniatowskiego St., 40-055 Katowice, Poland
Bibliografia
- [1] Kulig K., Rogóż W., Owczarzy A., Szkudlarek A., MaciążekJurczyk M.: Material engineering for atopic dermatitis treatment. Med Res J. 5(2) (2020) 110-115. DOI: 10.5603/MRJ.a2020.0012.
- [2] Sokół J.L.: Nanotechnology in human’s life. Economy and Management 1(4) (2012) 18-29.
- [3] Nasrollahzadeh M., Sajadi S.M., Sajjadi M., Issaabadi Z.: Chapter 1 - An Introduction to Nanotechnology. In: Interface Science and Technology 28 (2019) 1-27. https://doi.org/10.1016/B978-0-12-813586-0.00001-8.
- [4] Srivastava S., Bhargava A.: Green Nanotechnology: An Overview. In: Green Nanoparticles: The Future of Nanobiotechnology (Springer Singapore 2021) 1-13. https://doi.org/10.1007/978-981-16-7106-7.
- [5] Poh T.Y., Ali N.A.B.M., Aogain M.M., Kathawala M.H., Setyawati M.I., Ng K.W., Chotirmall S.H.: Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part. Fibre Toxicol. 15(1) (2018) 46. https://doi.org/10.1186/s12989-018-0282-0.
- [6] Ali M.: What function of nanoparticles is the primary factor for their hyper-toxicity? Adv Colloid Interface Sci. 314 (2023) 102881. doi: 10.1016/j.cis.2023.102881.
- [7] Alalaiwe A.: Bioconjugated nanometals and cancer therapy: a pharmaceutical perspective. Nanomedicine (Lond) 16 (2021) 1791-1811. doi: 10.2217/nnm-2021-0010.
- [8] Xu L., Wang Y.Y., Huang J., Chen C.Y., Wang Z.X., Xie H.: Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 10(20) (2020) 8996–9031. https://doi.org/10.7150/thno.45413.
- [9] Iosub C.Ş., Olăreţ E., Grumezescu A.M., Holban A.M., Andronescu E.: Toxicity of nanostructures - a general approach. In: Micro and Nano Technologies, Nanostructures for Novel Therapy, eds. D. Ficai, A.M. Grumezescu (Elsevier 2017) 793–809. https://doi.org/10.1016/B978-0-323-46142-9.00029-3.
- [10] Cotton G.C., Lagesse N.R., Parke L.S., Meledandri C.J.: Antibacterial nanoparticles. In: Comprehensive Nanoscience and Nanotechnology (Second Edition), eds. D.L. Andrews, R.H. Lipson, T. Nann (Academic Press 2019) 65-82. https://doi.org/10.1016/B978-0-12-803581-8.10409-6.
- [11] Sarwat S., Stapleton F., Willcox M., Roy M.: Quantum Dots in Ophthalmology: A Literature Review. Current Eye Research 44(10) (2019) 1037–1046. https://doi.org/10.1080/02713683.2019.1660793.
- [12] Soldado A., Cid Barrio L., Díaz-Gonzalez M., de la EscosuraMuñiz A., Costa-Fernandez J.M.: Advances in quantum dots as diagnostic tools. In: Advances in Clinical Chemistry, ed. G.S. Makowski (Elsevier 2022) 107: 1–40. https://doi.org/10.1016/bs.acc.2021.07.001.
- [13] Guo B., Ma P.X.: Conducting polymers for tissue engineering. Biomacromolecules 19(6) (2018) 1764–1782. https://doi.org/10.1021/acs.biomac.8b00276.
- [14] Atanase L.I.: Micellar drug delivery systems based on natural biopolymers. Polymers 13(3) (2021) 477. https://doi.org/10.3390/polym13030477.
- [15] Jain S., Kumar N., Tahir M., Garg S.: Nanoparticle synthesis, characterization and applications. Nanomaterial-Plant Interactions, eds. N.S. Chauhan, S.S. Gill (2023) 13–40. https://doi.org/10.1016/B978-0-323-91703-2.00007-5.
- [16] Khan I., Saeed K., Khan I.: Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12(7) (2019) 908–931.- https://doi.org/10.1016/j.arabjc.2017.05.011.
- [17] Saeed K., Khan I.: Preparation and characterization of singlewalled carbon nanotube/nylon 6,6 nanocomposites. Instrumentation Science & Technology 44(4) (2016) 435–444. https://doi.org/10.1080/10739149.2015.1127256.
- [18] Gonzales-Carter D., Goode A.E., Kiryushko D., Masuda S., Hu S., Lopes-Rodrigues R., Dexter D.T., Shaffer M.S.P., Porter A.E.: Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. Nanoscale 11(45) (2019) 22054–22069. https://doi.org/10.1039/C9NR02866H.
- [19] Waszkiewicz-Robak B., Świderski F.: Nanotechnologia – korzyści i zagrożenia zdrowotne. Bromat. Chem. Toksykol. 41(3) (2008) 202–208.
- [20] Niemirowicz K., Car H.: Nanonośniki jako nowoczesne transportery w kontrolowanym dostarczaniu leków. CHEMIK 66(8) (2012) 868–881.
- [21] Rieux A., Fievez V., Garinot M., Schneider Y., Préat V.: Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. JCR 116(1) (2006) 1–27. https://doi.org/10.1016/j.jconrel.2006.08.013.
- [22] Sękowski S., Miłowska K., Gabryelak T.: Dendrimers in biomedical sciences and nanotechnology. Postępy Higieny i Medycyny Doświadczalnej 62 (2008) 725–733.
- [23] Foldvari M., Bagonluri M.: Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine 4(3) (2008) 173–182. https://doi.org/10.1016/j.nano.2008.04.002.
- [24] Cormode D., Jarzyna P., Mulder W., Fayad Z.: Modified natural nanoparticles as contrast agents for medical imaging. Adv. Drug Deliv. Rev. 62(3) (2010) 329–338. https://doi.org/10.1016/j.addr.2009.11.005.
- [25] Artemov D., Mori N., Okollie B., Bhujwalla Z.: MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. J. Magn. Reson. 49 (2003) 403–408. https://doi.org/10.1002/mrm.10406.
- [26] Henriksen-Lacey M., Carregal-Romero S., Liz-Marzán L.M.: Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjugate Chemistry 28(1) (2017) 212–221. https://doi.org/10.1021/acs.bioconjchem.6b00514.
- [27] Coccini T., De Simone U., Roccio M., Croce S., Lenta E., Zecca M., Spinillo A., Avanzini M.A.: In vitro toxicity screening of magnetite nanoparticles by applying mesenchymal stem cells derived from human umbilical cord lining. J. Appl. Toxicol. 39 (2019) 1320–1336. https://doi.org/10.1002/jat.3819.
- [28] Albers C.E., Hofstetter W., Siebenrock K.A., Landmann R., Klenke F.M.: In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 7(1) (2011) 30–36. https://doi.org/10.3109/17435390.2011.626538.
- [29] Kumaran R., Choi Y.K., Singh V., Song H.-J., Song K.-G., Kim K.J., Kim H.J.: In vitro cytotoxic evaluation of MgO nanoparticles and their effect on the expression of ROS genes. Int. J. Mol. Sci. 16 (2015) 7551–7564. https://doi.org/10.3390/ijms16047551.
- [30] Loutfy S.A., Al-Ansary N.A., Abdel-Ghani N.T., Mohamed M.B., Craik J.D., Salah Eldin T.A.: Anti-proliferative activities of metallic nanoparticles in an in vitro breast cancer model. APJCP 16 (2015) 6039–6046. https://doi.org/10.7314/APJCP.2015.16.14.6039.
- [31] Means R.T.: Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters. Nutrients 12(2) (2020) 447. doi: 10.3390/nu12020447.
- [32] Das S.: Nobel prize for the fruit fly. Journal of Practical Cardiovascular Sciences 3 (2017) 68 69. https://doi.org/10.4103/jpcs.jpcs_42_17.
- [33] Tolwinski N.S.: Introduction: Drosophila - A Model System for Developmental Biology. J. Dev. Biol. 5(3) (2017) 9. https://doi.org/10.3390/jdb5030009.
- [34] Abolaji A.O., Kamdem J.P., Farombi E.O., Rocha J.B.T.: Drosophila melanogaster as a Promising Model Organism in Toxicological Studies. Arch. Bas. App. Med. 1 (2013) 33–38.
- [35] Adams M.D. et al.: The Genome Sequence of Drosophila melanogaster. Science 287 (2000) 2185–2195. https://doi.org/10.1126/science.287.5461.2185.
- [36] Anton S., Lucas P.: Invertebrate Neurobiology: Sensory Systems, Information Integration, Locomotor- and Behavioral Output. Front. Physiol. 12 (2021). https://doi.org/10.3389/fphys.2021.807521.
- [37] Górska-Andrzejak J., Damulewicz M., Pyza E.: Circadian changes in neuronal networks. Curr Opin Insect Sci. 7 (2015) 76-81. doi: 10.1016/j.cois.2015.01.005.
- [38] Ong C., Yung L., Cai Y., Bay H., Baeg H.: Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9(3) (2014) 1–8. https://doi.org/10.3109/17435390.2014.940405.
- [39] Alaraby M., Annangi B., Hernández A., Creus A., Marcos R.: A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. J. Hazard. Mater. 296 (2015) 166–174. https://doi.org/10.1016/j.jhazmat.2015.04.053.
- [40] Panacek A., Prucek R., Safarova D., Dittrich M., Richtrova J., Benickova K., Zboril R., Kvitek L.: Acute and Chronic Toxicity Effects of Silver Nanoparticles (NPs) on Drosophila melanogaster. Nauka o środowisku i technologia 45(11) (2011) 4974–4979.
- [41] Tyagi K., Mishra R., Khan F., Gupta D., Gola D.: Antifungal Effects of Silver Nanoparticles Against Various Plant Pathogenic Fungi and its Safety Evaluation on Drosophila melanogaster. Biointerface Research in Applied Chemistry 10(6) (2020) 6587–6596. https://doi.org/10.33263/BRIAC106.65876596.
- [42] Singh A., Raj R., Padmanabhan A., Shah P., Agrawal N.: Combating silver nanoparticle-mediated toxicity in Drosophila melanogaster with curcumin. J. Appl. Toxicol. 41(8) (2021) 1188–1199. https://doi.org/10.1002/jat.4103.
- [43] Posgai R., Cipolla-McCulloch C.B., Murphy K.R., Hussain S.M., Rowe J.J., Nielsen M.G.: Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85(1) (2011) 34–42. https://doi.org/10.1016/j.chemosphere.2011.06.040.
- [44] Pompa P., Vecchio G., Galeone A. Brunetti V., Sabella S., Maiorano G., Falqui A., Bertoni G., Cingolani R.: In Vivo Toxicity Assessment of Gold Nanoparticles in Drosophila melanogaster. Nano Research 4 (2011) 405–413. https:// 10.1007/s12274-011-0095-z.
- [45] Sood K., Kaur J., Singh H., Kumar Arya S., Khatri M.: Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol. Rep. 6 (2019) 768–781. https://doi.org/10.1016/j.toxrep.2019.07.009.
- [46] Singh M.P., Shabir S., Deopa A.S., Raina S.R., Bantun F., Jalal N.A., Abdel-razik N.E., Jamous Y.F., Alhumaidi M.S., Altammar K.A., Hjazi A., Singh S.K., Vamanu E.: Synthesis of Green Engineered Silver Nanoparticles through Urtica dioica: An Inhibition of Microbes and Alleviation of Cellular and Organismal Toxicity in Drosophila melanogaster. Antibiotics (Basel) 11(12) (2022) 1690. https://doi.org/10.3390/antibiotics11121690.
- [47] Araj S.-E.A., Salem N.M., Ghabeish I.H., Awwad A.M.: Toxicity of- Nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J. Nanomater. (2015) 9. https://doi.org/10.1155/2015/758132.
- [48] Sabat D., Patnaik A., Ekka B., Dash P., Mishra M.: Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol. Behav. 167 (2016) 76–85. https://doi.org/10.1016/j.physbeh.2016.08.032.
- [49] Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F.: The History of Nanoscience and Nanotechnology: From ChemicalPhysical Applications to Nanomedicine. Molecules 25(1) (2019) 112. https://doi.org/10.3390/molecules25010112.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7be17ed5-21d3-4bad-b800-be566dfced92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.