
Int. J. Appl. Math. Comput. Sci., 2023, Vol. 33, No. 1, 21–31
DOI: 10.34768/amcs-2023-0002

A GENETIC ALGORITHM BASED OPTIMIZED CONVOLUTIONAL NEURAL
NETWORK FOR FACE RECOGNITION

NAMRATA KARLUPIA a,* , PALAK MAHAJAN a, PAWANESH ABROL a, PARVEEN K. LEHANA b

aDepartment of Computer Science and Information Technology
University of Jammu

Baba Saheb Ambedkar Road, 180006, Jammu, India
e-mail: namrataphonsa@gmail.com

bDepartment of Electronics
University of Jammu

Baba Saheb Ambedkar Road, 180006, Jammu, India

Face recognition (FR) is one of the most active research areas in the field of computer vision. Convolutional neural networks
(CNNs) have been extensively used in this field due to their good efficiency. Thus, it is important to find the best CNN
parameters for its best performance. Hyperparameter optimization is one of the various techniques for increasing the
performance of CNN models. Since manual tuning of hyperparameters is a tedious and time-consuming task, population
based metaheuristic techniques can be used for the automatic hyperparameter optimization of CNNs. Automatic tuning of
parameters reduces manual efforts and improves the efficiency of the CNN model. In the proposed work, genetic algorithm
(GA) based hyperparameter optimization of CNNs is applied for face recognition. GAs are used for the optimization of
various hyperparameters like filter size as well as the number of filters and of hidden layers. For analysis, a benchmark
dataset for FR with ninety subjects is used. The experimental results indicate that the proposed GA-CNN model generates
an improved model accuracy in comparison with existing CNN models. In each iteration, the GA minimizes the objective
function by selecting the best combination set of CNN hyperparameters. An improved accuracy of 94.5 % is obtained for
FR.

Keywords: convolutional neural network, hyperparameters, genetic algorithm, deep learning, evolutionary techniques.

1. Introduction
Face recognition (FR) coupled with Artificial Intelligence
tools is the next big step in the field of security. Bio-metric
frameworks based on face recognition are widely used in
several applications like forensics, criminal investigations,
etc. (Pujol et al., 2016). Face detection and alignment are
the primary steps in FR. Further, features are extracted
from the image and matched with the database containing
all the facial images. In FR, traditional algorithms like
Fisherfaces, meta-face, Bayesian face were not able to
resolve the challenges like resolution, pose variations,
aging, etc., for detecting global and local facial features
(Guo and Zhang, 2019; Raju et al., 2022).

Deep learning research has flourished tremendously
with artificial intelligence as its backbone. Deep

*Corresponding author

learning has shown great potential in the domains of
computer vision, speech recognition (Dargan et al., 2020),
multimedia, natural language processing, image quality
assessment (Mahajan et al., 2021), medical imaging
(Patro et al., 2022; Mahajan et al., 2021), object based
classification (Mahajan et al., 2020a). In classification,
the use of convolutional neural networks (CNNs) has
produced substantial progress. CNNs are the core
persuasive models being applied in deep learning for
such tasks (Liu and An, 2020). However, in spite of
the considerable progress made in the field of facial
recognition using deep learning, there is still room for
improving the classification performance of the system by
incorporating optimization in a CNN architecture.

In CNNs, hyperparameters include variables such
as hidden layers, padding, the learning rate, etc.
that are set before network training (Wang et al.,

mailto:namrataphonsa@gmail.com

22 N. Karlupia et al.

Fig. 1. Hyperparameter optimization techniques.

2019). There is no deterministic approach to find an
optimal CNN configuration due to the large number of
hyperparameters. They act significantly as they have
direct control and impact on the performance of the
training algorithm (Wu et al., 2019). It has been seen
that a good choice of hyperparameters results in better
outcomes (Vose et al., 2019). Hyperparameter tuning or
optimization is a nonconvex optimization problem, and
hyperparameters also exhibit nonlinearity interactions (Li
and Abdallah, 2020). The number of hyperparameters
grows exponentially and may sometimes get trapped in
a local optimum (Wang et al., 2019).

One of the most challenging tasks in the CNN
domain is to find the correct values of hyperparameters.
The CNN hyperparameter optimization techniques used
by researchers are mainly categorized as manual and
automatic search techniques, as shown in Fig. 1. The
manual search methods often deal with initializing the
hyperparameters by hit or trial methods or on the basis
of experience. It is the most common technique used for
tuning CNNs and is very ineffective and time-consuming.
The parameter combinations need to be in a structure so
that there is a minimum loss or maximum accuracy in the
model.

In automatic methods, grid search is a systematic
process where each combination of hyperparameters is
generated and evaluated on the model. It is effective
for a small number of hyperparameters. As the number
of parameters increases, the utilization of computational
resources also rises exponentially (Bergstra and Bengio,
2012). Therefore, it is an expensive search technique that
suffers from the curse of dimensionality. In a random
search, the hyperparameter combinations are selected
randomly in the search space. At a given execution
time and resources, it tries to find better results than the
grid method. Therefore, hyperparameter tuning can be
framed as an optimization problem and can be represented
mathematically as follows:

y∗ = argmin f(y), (1)

where f(y) represents an objective function such as root
mean square error and y is a set of hyperparameters in a
search space Y that produces an optimum value of f(y).

Since hyperparameter optimization is an NP-hard
problem, there is a need for an intelligent search
approach for hyperparameter tuning. Table 1
contains details regarding hyperparameter optimization
techniques. Metaheuristic optimization is predominantly
advantageous for optimization problems when there is
no precise method or when an optimal solution is not
necessary, and a good solution is enough. It does not
guarantee a global optimum but is still intelligent towards
discovering a decent solution for rectifying the problem
in less computational time and fewer resources. Hence,
in machine learning, exact methods are computationally
expensive, so at present, a metaheuristic approach has
been chosen.

As parameter optimization is a combinatorial
problem, metaheuristic methods have proven useful in
resolving complex combinatorial problems. Metaheuristic
algorithms like genetic algorithms GAs and bacterial
foraging optimization (BFO) algorithms (Karlupia
et al., 2019) apply properties such as exploration and
exploitation that can be used to solve optimization
problems with complex multiobjective functions. In the
proposed work, a hybrid framework has been created
by integrating an evolutionary technique, namely a GA,
with a CNN for hyperparameter optimization. With
face detection being a significant discipline in computer
vision, GAs have been cast-off for face recognition
based classification problems aimed at hyperparameter
optimization in CNN architectures. The CNN structural
hyperparameters reflected for learning include kernel size
as well as the number of convolutional layers and filters
for each layer. The task is to tune the values of filter
size and its corresponding numbers. The performance
of the configured CNN has been analyzed after applying
GA optimization to three configuration settings, i.e., to
two, three, and four convolutional layer combinations
of CNNs. The objective of this work is to explore the
applicability of CNNs on nature-inspired algorithms, i.e.,
GAs, and for this purpose, the domain has been chosen
for face recognition. The main contributions of our work
are as follows:

• We proposed a hybrid approach by integrating
the evolutionary technique GA with CNNs for
hyperparameter optimization.

• The optimized CNN architecture has been applied
for face recognition with facial images that are taken
from different angles.

A genetic algorithm based optimized convolutional neural network for face recognition 23

Table 1. Hyperparameter optimization methods.
Methods Advantages Disadvantages
Grid search It is a simple technique

Can be parallelized
Reliable in low-dimensional spaces
Explores the entire search space (Bergstra and
Bengio, 2012)

Sometimes trapped in local minima
Suffers from the curse of dimensionality
Inefficient for high dimensional hyperparameters
Wastes time in poor performing areas
Computationally expensive

Random In less time and resources tries to find better
solutions than grid search techniques (Bergstra
and Bengio, 2012)
Can be parallelized easily for independent
evaluations

Does not guarantee an optimal result
Sometimes shows poor performance
Not reliable for training complex models

Bayesian Currently most promising probabilistic informed
search (Betró, 1991; Victoria and Maragatham,
2021)
Mostly used for functions which are nonconvex or
computationally expensive to compute

Gaussian processes possess the cubic complexity
capability
Shows poor performance for high dimensional
data
Limited parallelization capacity
Poor scalability

Nature inspired Used to solve complex combinatorial
optimization problems
Generally, randomly hop around the search space,
so better than brute force methods
Perfect for problems where near-optimal solutions
instead of exact results are acceptable (Gadekallu
et al., 2021)

May not find satisfactory solutions
Initial tuning of parameters can be a challenging
task
For complex problems computations are
polynomial time bounded (Victoria and
Maragatham, 2021)

• To get the most out of the features of compounded
convolution layers, we have analyzed the
performance of the configured CNN after applying
GA optimization for 3 configuration settings, i.e.,
to 2, 3, and 4 convolutional layer combinations of
CNNs.

The structure of the paper is as follows. A
brief introduction to the literature is given in Section
2. Section 3 illustrates the GA and various steps
performed during hyperparameter optimization of the
CNN. A detailed description of the CNN is given in
Section 4. Various steps performed for the proposed work
are included in Section 5. The experimental results and
the analysis made are discussed in Section 6. Conclusion
and future work have been presented in the last section.

2. Related work

Researchers worldwide have worked on various soft
computing as well as traditional approaches to incorporate
optimization techniques in various domains. Various
hyperparameter tuning approaches such as random,
grid, and Bayesian have been used by researchers
to find the best hyperparameter combination set that
produces the best performance of deep neural networks.
However, these methods are not successful in deep
learning architectures that have a larger number of

hyper-parameters, so nowadays population based
metaheuristic techniques are being used.

Syulistyo et al. (2016) used particle swarm
optimization (PSO) for training CNNs to optimize
recognition accuracy. A handwritten dataset from the
MNIST data-base was taken that consists of 70,000 data
points, out of which 60,000 were used for training. The
fitness function is the root mean square error between
the estimated output vectors and the actual output. The
results obtained by PSO are compared with CNNs and
deep belief networks (DBNs), and it was concluded that
the proposed method has better accuracy (95.08 %) with
just 4 epochs. Chhabra et al. (2017) employed hybrid PSO
with a CNN, which reduce the dependency on the GPU
system and the number of epochs required for training
the CNN. The algorithm has the capability of attaining a
3 to 4% increase in accuracy with the reduced number of
epochs and a reduced hardware need for training CNNs.

Another technique to optimize the hyperparameters
for an image classification problem has been presented
by Suganuma et al. (2018) using Cartesian genetic
programming (CGP). Convolutional blocks and tensor
concatenation are taken as the node functions in
CGP. To experiment, the CIFAR-10 data set has been
considered for CNNs architecture design. A Grey Wolf
Optimization (GWO) based method for the optimization
of hyperparameters of CNNs is recommended by
Mohakud and Dash (2021). The efficiency of the

24 N. Karlupia et al.

proposed model is tested by comparing it with the
performance of PSO and GAbased models using the
multi-class data set, skin lesion published by the
International Skin Imaging Collaboration.

A hyperparameter optimization algorithm using a
Bayesian optimization technique for better performance
of the CNN model on the CIFAR-10 dataset has been
used by Wu et al. (2019). The objective function was
designed using the mean squared error and results are
validated using error values in the CPU and GPU. It is
seen that there is a 6.2 % reduction in the error in the
case of GPU. Also, an amalgamation of a Bayesian and
a GA is employed for hyperparameter optimization of
a CNN model by Cui and Bai (2019). The proposed
technique tries to overcome the limitations that the
Bayesian optimization algorithm has for a large number
of hyperparameters. An enhanced sine-cosine algorithm
was applied to the benchmark dataset CIFAR-10 and
experimental results show that the presented approach
shows better results compared with other metaheuristic
algorithms (Bacanin et al., 2021). Raju et al.
(2022) presented and explored different global and local
techniques for face recognition. GAs were used for
hyperparameter optimization of various CNN models for
classification problems on various datasets like MNIST
(Yoo et al., 2019), Chest Xray (Zhou, 2021), Acute
Lymphoblastic Leukemia (Rodrigues et al., 2022), etc.

A major issue in the tuning of hyperparameters
include training and evaluation of large datasets is
that it can be very expensive; moreover, the type
and range of hyperparameters are mostly unknown
and need some expertise. Therefore, nowadays,
automatic hyperparameter tuning is preferred instead of
manual methods. Automatic parameter tuning not only
reduces manual efforts but also tries to improve the
performance efficiency of the learning model. Recently,
population based metaheuristic optimization has been
used to overcome the issues with manual methods.
The characteristics of GAs offer advantages over other
optimization algorithms. These characteristics include
no need for gradient information, producing good results
with multiple local maxima or minima, an ability of being
parallelizable, and escaping local optima (Rojas, 1996;
Aszemi and Dominic, 2019). Hence, a GA has been
chosen for the proposed work.

3. Genetic algorithm
The GA is an evolutionary technique that is commonly
used to resolve combinatorial optimization based
problems. Each chromosome in the GA population
represents a possible solution. A chromosome can be
assumed as an amalgamation of genes. For a specific
problem, a distinct GA encoding representation is used.
The selection step of the GA is based on different

methods like elite, roulette, rank, and tournament (Albadr
et al., 2020). In the crossover process of the GA, parts
of the genetic order are crossed from both the parents to
form a novel genetic sequence in the offspring. The goal
is to find a chromosome in the population that meets the
best fitness requirement.

The first step is to initialize a set of chromosomes that
specifies the CNN configuration. In the next steps, GA
operators like the selection of best parents, mutation, and
crossover have been applied. A population is generated
containing a set of chromosomes that comprises CNN
configurations of a maximum number of filters and a
maximum size of the filters. Based on each individual’s
fitness function, the whole population is sorted based on
the rank from best to worst. The best-ranked parents
are selected and crossed. In the mutation step, two
bits at two randomly selected genes of an individual’s
indices are being flipped. The mutation rate is kept
low to preserve the good qualities of newly generated
chromosomes (Hassanat et al., 2019).

4. CNN
CNNs are the most widely used deep networks designed
to employ computer vision. A CNN can be defined as
a trainable multilayered ANN comprising various layers,
where the input and output at each layer are represented
as a feature map.

The basic architecture of the CNN consists of several
layers such as convolution, pooling, ReLU, normalization,
dropout, fully-connected, softmax, etc. each having
unique characteristics (Wu et al., 2019). Figure 2
represents a typical classification based CNN model.

The convolution layer generates a cluster of feature
images. For a 2-D image, I(i, j) as input and a 2-D
convolution kernel, K , of size m × n, the convolution
operation is characterized by (Aydogdu et al., 2017)

C(i, j) =
∑

m

∑

n

I(i+m− 1, j+ n− 1)K(m,n). (2)

Implementation of this equation for image
convolution is illustrated in Fig. 3. A 2-D kernel
filter is convolving over the input 2-D image. The kernel
is swept over the image at every single location and the
output is calculated. Rectified Linear Units (ReLUs) are
used for nonlinearities. They are added as they empower
the layers to captivate nonlinear data.

Afterwards, pooling is added to minimize the spatial
size of the image. Max pooling and average pooling are
the most common forms of pooling layers that output
the maximum and the average in a sampling area after
convolution mapping. Max pooling as an example is
illustrated in Fig. 4.

Batch normalization has been the most suitable layer
to optimize the network. It is between convolutional and

A genetic algorithm based optimized convolutional neural network for face recognition 25

Fig. 2. Typical CNN architecture.

Fig. 3. Image convolution operation.

Fig. 4. Diagrammatic illustration of 2 × 2 max-pooling.

Fig. 5. Illustration of the softmax operation.

nonlinear layers to accelerate network training and reduce
sensitivity towards network initialization. The normalized
activation is given (Ioffe and Szegedy, 2015) as

x̂i =
xi − μβ√
σ2
β + ε

, (3)

where xi are inputs over mini-batches, μβ and σ2

represent the mean and the variance, respectively,

ε defines numerical stability for the low mini-batch
variance. Followed by shifting input to β, a learnable
offset and scales through the learnable factor γ, the
activation can be defined as

yi = γx̂i + β, (4)

where xi is the normalized value obtained. A dropout
layer can also be appended to adjust the layer’s input
elements to zero for a defined probability. For the node
activation probability, a binomial distribution is set to
provide training to each node, and based on the value
the node is made available or being dropped out. If the
value is zero, then the node is restricted; otherwise it
is made available. A fully connected layer is conjoined
at the end of the network. Every node in this layer
is connected with every other node from its preceding
layer. It blends all features learned through preceding
layers that help in recognizing larger patterns. To resolve
image classification, a softmax layer must follow the
classification output layer in the CNN. The softmax
operation normalizes the outputs of each unit between 0
and 1 so that their output’s aggregate to 1 which has been
depicted by Fig. 5. The mathematical representation of
the softmax activation function is as follows:

σ(zr) =
ezr

∑K
j=i e

zj
, (5)

where 0 ≤ z ≤ 1 and z represents the input vector.
k is the number of classes. The softmax layer’s output
is then taken by the classification layer followed by an
assignment of a given input by the classification layer to
one of K mutually exclusive classes.

5. Proposed model
A highly efficient approach for the image classification
based CNN-GA model has been proposed. This
work exploits the utility of the GA for the model
hyperparameter optimization of the CNN. Several
choices for designing the model architecture are available;
therefore, it is a tedious task to find the best model
architecture. The model parameters that have been used
for analysis include the size of the kernel also known
as filter size as well as the number of filters and of
hidden layers. The hidden layers define the depth of a
given CNN structure. A low-depth network is incapable
of absorbing intricate learning tasks for image based
processing, whereas a very deep network structure can
overfit effortlessly. In consequence, the number of
convolution layers is one of the main parameters to be
decided for proper results. The second parameter, i.e.,
kernel size, depends on the problem and an optimal kernel
size helps to learn the designs. The third parameter
considered for optimization is the number of filters. Its

26 N. Karlupia et al.

optimal value is needed to avoid a loss of information
or the network overfitting (Bibaeva, 2018). The network
architecture for hyperparameter optimization using the
CNN-GA framework is illustrated in Fig. 6.

The proposed model has two subblocks. In the first
block, the GA was used for hyperparameter optimization
followed up with a second block that prepares the
training of the CNN using the obtained optimized
hyperparameters.

In the GA block, a random initial population of
chromosomes is generated. For three convolutional
layers, each chromosome is comprised of six genes
that correspond to one solution illustrated in Fig. 7.
The first three genes of the chromosome denote the
number of filters and the next three genes represent the
corresponding size of each filter. After initialization, the
fitness of each chromosome is calculated, which depends
on the error generated by the CNN. Two parents with the
best solution or fewer errors are selected and crossover
is performed. In the crossover operation, random indices
for crossover points are generated and then using these
crossover points selected parents are crossed to generate
offspring as shown in Fig. 8. In mutation, random indices
of a gene in chromosomes are generated and the values
in these indices are swapped. Figure 9 represents the
mutation process of the GA. The mutation is carried out
to avoid the algorithm to stuck in local minima. The
above procedure is carried out iteratively to get the best
combination of genes in a chromosome. Each individual
is evaluated by its accuracy or error generated by training
the CNN network. Similarly, the experiment is repeated
for different numbers of convolutional layers and the
numbers of genes in chromosomes are set accordingly .

The CNN block takes CNN hyperparameters, i.e., the
number of convolution layers, the maximum number of
filters, and the corresponding kernel size from the GA
block. The other parameters like the learning rate or
the number of epochs are also initialized in this block.
The dataset was split into training and testing sets and
subsequent layers of the CNN like the ReLU function,
max-pooling, or the softmax layer are applied. The error
generated by the CNN is used as an objective function
for the GA. The objective is to solicit multinomial
logistic regression through the proposed architecture that
maximizes the log-probability of the true label beneath
its prediction distribution (Mahajan et al., 2020b). The
steps involved in generating an optimized set of CNN
hyperparameters for the proposed work are presented in
Algorithm 1.

5.1. Objective function. An objective function
was designed to select the best combination of
hyperparameters. The classification error generated by
CNN was used as an objective function for the GA.
The objective is to find the best combination of the

hyperparameters using the GA and then this combination
is applied for face detection,

FitnessValue = 100− accuracy%. (6)

5.2. Parameter setting for the GA. The initial
population consists of chromosomes with each
chromosome having a length of 6. First, three genes of
chromosomes represent ‘Number of filters’ and the next
three represents ‘Size of filter’ for the CNN. An initial
population of 20 individuals was been created and the
number of generations considered is 50. Parameters like
the mutation rate or the crossover probability are set as
0.01 and 0.50, respectively, as shown in Table 2.

Algorithm 1. GA-CNN algorithm.
Require: max iter: maximum number of GA iterations

or generations
max pop: maximum number of solutions
individual fit: fitness value of each individual in terms
of validation error
cross prob: crossover probability rate
mut prob: random mutation probability
children list: population generated after crossover
operation
conv layers: number of convolutional layers
Input: (max iter, cross prob, mut prob,max pop)
Output: (Optimized hyperparameters, i.e., filter size,
number of filters, number of convolutional layers)
for conv layer = 2 to 4 do

initialize iter = 0
initialize population with random hyperparameter
combination
for each individual in population

calculate individual fit = validation error
end for
while iter ≤ max iter do

for individuals in population do
select best parents from population based
on fitness function value
according to select prob

apply mutation to children list with
defined mutation probability
apply crossover to generated children list
po = children list
calculate individual fit for new
population = validation error

end for
iter = iter + 1

end while
end for

A genetic algorithm based optimized convolutional neural network for face recognition 27

Fig. 6. Face recognition architecture using a CNN with GA based optimization.

6. Experimental results

This section exemplifies the capability of the proposed
model CNN-GA model to find the optimal structures
for face recognition. The task is to tune the values of
filter sizes and their number. The experimental work is
performed on Intel(R) Core (TM) i7-8750H CPU with
20 GB RAM accompanied by NVIDIA GeForce GTX
1050Ti. The software platform used is MATLAB R2019b
operating on Windows 10.

6.1. Data description. For determining the viability of
the proposed model, face recognition based classification
is performed on the Robotics Lab’s Face detection

dataset1. The Face dataset consists of 6660 images with
90 subjects. Each subject has 74 images that are taken
from different angles, i.e., every 5 degrees in the pan
rotation from the right to the left profile. Every subject
represents a class category with 74 images each of size
640 × 480. Figure 10 illustrates several ground-truth
images for the dataset representing various face angles for
different subjects.

6.2. Observation. First, we tried to manually design
the CNN structure by using the hit and trial method.
This approach gives a very poor classification accuracy

1http://robotics.csie.ncku.edu.tw/Databases/Fa
ceDetect_PoseEstimate.htm#Our_Database_.

http://robotics.csie.ncku.edu.tw/Databases/FaceDetect_PoseEstimate.htm#Our_Database_
http://robotics.csie.ncku.edu.tw/Databases/FaceDetect_PoseEstimate.htm#Our_Database_

28 N. Karlupia et al.

of about 60%. To experiment with the proposed
methodology, the number of convolution layers, the
maximum number of filters, and the maximum kernel size
considered are shown in Table 3.

The CNN model is trained for different
configurations of convolutional layers. Figure 11 depicts
varied transitions for the accuracy-loss profile while
training through various iterations. In certain graphs, a
low accuracy can be observed for the initial iterations
of the GA, and the accuracy rises as iterations increase.
The GA with 10 chromosomes and 10 generations was
executed 10 times. Figure 12(a) shows the convergence
curve for the objective function using 2 convolutional
layers of the CNN. Since the objective function of the
GA depends on the error generated by the CNN, it can
be observed that with the increase in iterations the fitness
function starts decreasing but does not converge till 10
iterations, and the accuracy achieved is 85%.

The experiment is repeated by using three
convolutional layers. The convergence curve for 3
convolutional layers of CNN is shown in Fig. 12(b).
The accuracy achieved using three convolutional
layers is about 90%. Figure 12(c) represents the

No. of Filters Size of Filter

4 10 15 3 5 6

Fig. 7. Chromosome encoding.

No. of Filters Size of Filter

1Parent1

Parent2

2 3 4 5 6

7 8 9 10 11 12

1 2 9 10 11 6

1 2 3

7 8 9

4 5 6

10 11 12

Child

Fig. 8. Crossover.

No. of Filters Size of Filter

4 10 15 3 5 6

15 8 4 3 6 5

Before Mutation

After Mutation

3 5 6

3 6 5

4 10 15

15 8 4

Fig. 9. Mutation.

Fig. 10. Snippet of the face detection database.

Table 2. GA parameter initialization.
Parameter Value

1 population size 10
2 no. of generations 10
3 mutation rate 0.02
4 crossover 0.50
5 mutation method swap mutation
6 selection method rank based
7 fitness function CNN error

Table 3. CNN hyper-parameters.
Parameter Value

1 number of convolutional layers 2, 3, 4
2 maximum Kernel size 20
3 maximum number of filters 50

convergence of the CNN’s classification error using
four convolutional layers and the accuracy achieved is
94.5%. Thus, the best combination of hyperparameters
is generated by a four-convolutional-layer CNN with the
highest accuracy. In expansion to the standard 80–20
training–testing split of the dataset, furthermore, we
included both 70–30 and 60–40 training–testing data
splits. A comprehensive breakdown of the classification
parameter’s performance for configured GA-CNN models
for different convolutional layers can be found in Table
4. As can be observed in Table 4, the GA-CNN model
with four convolutional layers performed preeminently
within the cluster with the ratio of the 70–30 split giving
the overall best outcome in terms of precision, recall, and
the F1-score. The results for the split can be found in
Figs. 13 and 14, respectively.

Also, a comparison was made with the existing
CNN techniques like AlexNet, VGG-16, ResNet50, and
InceptionV3 models as shown in Table 5. In the case
of existing CNNs, the observed performance in terms
of accuracy was less than 90%. For the proposed
GA-CNN model the accuracy observed is equal to 94.5%
for the four-layer model. As hyperparameter tuning was
incorporated using GA parameters, the proposed method
yields high accuracy compared with non-optimization
based techniques.

7. Conclusion
The paper implements a GA for the hyperparameter
optimization of a CNN model for face recognition.
Since the complexity of finding an optimal set of
parameters increases with an increase in the number
of hyperparameters, metaheuristic based optimization
techniques are used to find the best combination
of hyperparameters. The work presents a thorough
experimental analysis of a GA based CNN network
for different convolutional layers. The GA tries to

A genetic algorithm based optimized convolutional neural network for face recognition 29

Fig. 11. Transitions in the accuracy-loss curve while training the CNN through various iterations with the GA.

2 4 6 8 10
Number of Iterations

0

10

20

30

40

50

60

F
itn

es
s

F
un

ct
io

n

(c)

2 4 6 8 10
Number of Iterations

0

20

40

60

80

100

F
itn

es
s

F
un

ct
io

n

(a)

2 4 6 8 10
Number of Iterations

0

20

40

60

80

100

F
itn

es
s

F
un

ct
io

n

(b)

(a) (b) (c)

Fig. 12. Fitness value for each iteration using two convolutional layers (a), three convolutional layers (b) and four convolutional layers
of the CNN (c).

Table 4. Performance measured using different training–testing splits.
80–20 70–30 60–40

GA-CNN model Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
2 convolutional layers 78.38 79.28 78.51 75.32 74.27 79.5 70.51 77.75 78.71
3 convolutional layers 79.54 79.53 79.72 78.89 79.14 78.23 77.23 77.30 77.88
4 convolutional layers 82.71 80.35 81.27 89.49 89.75 85.19 81.17 79.90 80.56

find the best combination set of CNN hyperparameters
for face recognition. The proposed model generates
optimum results using a four-convolutional-layer based
CNN model. Thus, the proposed work presents a
reliable optimized CNN based FR system. Further, the
inclusion of more hyperparameters like the learning rate,
the number of epochs, etc., and applying them to other
datasets may be considered. Also, the incorporation of

the other metaheuristic algorithms for further optimization
may be considered for future work.

References
Albadr, M.A., Tiun, S., Ayob, M. and Al-Dhief, F. (2020).

Genetic algorithm based on natural selection theory for
optimization problems, Symmetry 12(11): 1758.

30 N. Karlupia et al.

Fig. 13. GA-CNN performance in terms of precision and recall.

Fig. 14. GA-CNN performance in terms of F1-score.

Table 5. Performance comparison with different CNN models.
Method Accuracy

1 VGG-16 (Sikha and Bharath, 2022) 85.002
2 Inception V3 87.11
3 ResNet 50 86.066
4 AlexNet 78
5 CNN without optimization 60
6 Proposed GA-CNN (2 layers) 85
7 Proposed GA-CNN (3 layers) 90
8 Proposed (4 layers) GA-CNN 94.5

Aszemi, N.M. and Dominic, D.D. (2019). Hyperparameter
optimization in convolutional neural network using genetic
algorithms, International Journal of Advanced Computer
Science and Applications 10(6): 269–278.

Aydogdu, M.F., Celik, V. and Demirci, M.F. (2017). Comparison
of three different CNN architectures for age classification,
11th IEEE International Conference on Semantic Comput-
ing (ICSC), San Diego, USA, pp. 372–377.

Bacanin, N., Zivkovic, M., Salb, M., Strumberger, I. and
Chhabra, A. (2021). Convolutional neural networks
hyperparameters optimization using sine cosine algorithm,
in S. Shakya et al. (Eds), Sentimental Analysis and
Deep Learning: Proceedings of ICSADL 2021, Springer,
Singapore, pp. 863–878.

Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization, Journal of Machine Learn-
ing Research 13(2): 281–305.

Betró, B. (1991). Bayesian methods in global optimization,
Journal of Global Optimization 1: 1–14.

Bibaeva, V. (2018). Using metaheuristics for hyper-parameter
optimization of convolutional neural networks, IEEE 28th
International Workshop on Machine Learning for Signal
Processing (MLSP), Aalborg, Denmark, pp. 1–6.

Chhabra, Y., Varshney, S. and Ankita (2017). Hybrid particle
swarm training for convolution neural network, Interna-
tional Conference on Contemporary Computing, Noida,
India, pp. 1–3.

Cui, H., Bai, J. (2019). A new hyperparameters optimization
method for convolutional neural networks, Pattern Recog-
nition Letters 125: 828–834.

Dargan, S., Kumar, M., Ayyagari, M.R. and Kumar, G. (2020).
A survey of deep learning and its applications: A new
paradigm to machine learning, Archives of Computational
Methods in Engineering 27: 1071–1092.

Gadekallu, T.R., Alazab, M., Kaluri, R., Maddikunta, P.K.R.,
Bhattacharya, S., Lakshmanna, K. and Parimala, M.
(2021). Hand gesture classification using a novel
CNN-crow search algorithm, Complex & Intelligent Sys-
tems 7: 1855–1868.

Guo, G. and Zhang, N. (2019). A survey on deep learning based
face recognition, Computer Vision and Image Understand-
ing 189: 102805.

Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas,
E., Hammouri, A. and Prasath, V.S. (2019). Choosing
mutation and crossover ratios for genetic algorithms—A
review with a new dynamic approach, Information
10(12): 390.

Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing internal
covariate shift, International Conference on Machine
Learning, Lille, France, pp. 448–456.

Karlupia, N., Sambyal, P., Abrol, P. and Lehana, P. (2019).
BFO and GA based optimization of illumination switching
patterns in large establishments, 6th International Confer-
ence on Computing for Sustainable Global Development
(INDIACom), New Delhi, India, pp. 349–354.

Li, Y. and Abdallah., S. (2020). On hyperparameter optimization
of machine learning algorithms: Theory and practice, Neu-
rocomputing 415: 295–316.

Liu, J. and An, F.-P. (2020). Image classification algorithm based
on deep learning-kernel function, Scientific Programming
3: 1–14.

Mahajan, P., Abrol, P. and Lehana, P.K. (2020a). Effect
of blurring on identification of aerial images using
convolution neural networks, in P.K. Singh et al. (Eds.),
proceedings of ICRIC 2019: Recent Innovations in Com-
puting, Springer, Cham, pp. 469–484.

Mahajan, P., Abrol, P., Lehana, P.K. (2020b). Scene based
classification of aerial images using convolution neural
networks, Journal of Scientific and Industrial Research
79(12): 1087–1094.

Mahajan, P., Jakhetiya, V., Abrol, P., Lehana, P., Subudhi, B.N.
and Guntuku, S.C. (2021). Perceptual quality evaluation
of hazy natural images, IEEE Transactions on Industrial
Informatics 17(12): 8046–8056.

A genetic algorithm based optimized convolutional neural network for face recognition 31

Mahajan, P., Karlupia, N., Abrol, P. and Lehana, P.K. (2021).
Identifying COVID-19 pneumonia using chest radiography
using deep convolutional neural networks, 62nd Interna-
tional Scientific Conference on Information Technology
and Management Science of Riga Technical University
(ITMS), Riga, Latvia, pp. 1–6.

Mohakud, R. and Dash, R. (2021). Designing a grey
wolf optimization based hyper-parameter optimized
convolutional neural network classifier for skin cancer
detection, Journal of King Saud University: Computer and
Information Sciences 34(8): 1319–1578.

Patro, K.K., Prakash, A.J., Samantray, S., Pławiak, J.,
Tadeusiewicz, R. and Pławiak, P. (2022). A hybrid
approach of a deep learning technique for real-time ECG
beat detection, International Journal of Applied Math-
ematics and Computer Science 32(3): 455–465, DOI:
10.34768/amcs-2022-0033.

Pujol, F.A., Mora, H. and Girona-Selva, J.A. (2016).
A connectionist computational method for face
recognition, International Journal of Applied Mathe-
matics and Computer Science 26(2): 451–465, DOI:
10.1515/amcs-2016-0032.

Raju, K., Chinna Rao, B., Saikumar, K. and Lakshman Pratap,
N. (2022). An optimal hybrid solution to local and global
facial recognition through machine learning, in P. Kumar
et al. (Eds), A Fusion of Artificial Intelligence and Internet
of Things for Emerging Cyber Systems, Springer, Cham,
pp. 203–226.

Rodrigues, L.F., Backes, A.R., Travençolo, B.A.N. and
de Oliveira, G.M.B. (2022). Optimizing a deep
residual neural network with genetic algorithm for acute
lymphoblastic leukemia classification, Journal of Digital
Imaging 35(3): 623–637.

Rojas, R. (1996). Neural Networks: A Systematic Introduction,
Springer, Berlin/Heidelberg.

Sikha, O. and Bharath, B. (2022). VGG16-random Fourier
hybrid model for masked face recognition, Soft Comput-
ing 26(22): 12795–12810.

Suganuma, M., Shirakawa, S. and Nagao, T. (2018). A genetic
programming approach to designing convolutional neural
network architectures, International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, pp. 5369–5373.

Syulistyo, A.R., Purnomo, D.M.J., Rachmadi, M.F. and
Wibowo, A. (2016). Particle swarm optimization (PSO)
for training optimization on convolutional neural network
(CNN), Complex & Intellelligent Systems 9(1): 52–58.

Victoria, H. and Maragatham, G. (2021). Automatic tuning
of hyperparameters using Bayesian optimization, Evolving
Systems 12: 217–223.

Vose, A., Balma, J., Heye, A., Rigazzi, A., Siegel, C., Moise, D.,
Robbins, B. and Sukumar, S. R. (2019). Recombination of
artificial neural networks, ArXiv: abs/1901.03900.

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H. and Deng,
S.-H. (2019). Hyperparameter optimization for machine
learning models based on bayesian optimization, Journal
of Electronic Science and Technology 17(1): 26–40.

Yoo, J.-H., Yoon, H.-i., Kim, H.-G., Yoon, H.-S. and Han, S.-S.
(2019). Optimization of hyper-parameter for CNN model
using genetic algorithm, 2019 1st International Confer-
ence on Electrical, Control and Instrumentation Engineer-
ing (ICECIE), Kuala Lumpur, Malaysia, pp. 1–6.

Wang, Y., Zhang, H. and Zhang, G. (2019). CPSO-CNN:
An efficient PSO-based algorithm for fine-tuning
hyper-parameters of convolutional neural networks,
Swarm and Evolutionary Computation 49: 114–123.

Zhou, M. (2021). Heuristic hyperparameter optimization for
convolutional neural networks using genetic algorithm,
arXiv: 2112.07087.

Namrata Karlupia is currently a senior re-
searcher in the Department of Computer Sci-
ence and IT, University of Jammu. She holds
an MTech in computer science from the Univer-
sity of Jammu. She works in the area of nature-
inspired algorithms, machine learning, and deep
learning.

Palak Mahajan holds an MTech degree in engi-
neering from Shri Mata Vaishno Devi University,
Jammu. She is currently pursuing her PhD and
works as a lecturer in the Department of Com-
puter Science and Information Technology, Uni-
versity of Jammu. She is interested in image pro-
cessing, deep learning, computer vision, and ma-
chine learning.

Pawanesh Abrol is a professor in the De-
partment of Computer Science and Information
Technology, University of Jammu. He holds a
PhD in computer science from the University of
Jammu, as well as an MBA (HRM). Dr. Abrol
has contributed more than 50 research publica-
tions in various reputed national and international
proceedings and journals. His research covers
aura based texture analysis, image forgery as well
as authentication and eye gaze technologies.

Parveen Kumar Lehana holds an MS degree
from Kurukshetra University and a PhD degree
in signal processing from the Indian Institute of
Technology in Bombay. He is currently a profes-
sor in the Department of Electronics, University
of Jammu. He has wide experience in teaching,
research, and guiding MS, MEng, and PhD stu-
dents. He has published more than 200 research
papers in national/international journals.

Received: 15 May 2022
Revised: 19 December 2022
Accepted: 20 December 2022

	Introduction
	Related work
	Genetic algorithm
	CNN
	Proposed model
	Objective function
	Parameter setting for the GA

	Experimental results
	Data description
	Observation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

