PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Broadband convolutional scattering characteristics of all dielectric transmission Pancharatnam–Berry geometric phase metasurfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to obtain the broadband scattering characteristics, we propose a superperiodic cell structure with all-dielectric material to construct Pancharatnam–Berry geometric phase encoding metasurfaces. Because we cannot design or prepare infinitesimal coding unit particles, according to the generalized Snell’s law, we can only obtain discrete scattering angle regulation for the basic coding metasurface sequence. In order to obtain multi-angle scattering characteristics, we introduce the Fourier convolution principle in digital signal processing on the Pancharatnam–Berry geometric phase encoding metasurfaces. By using the addition and subtraction operations on two encoding metasurface sequences, a new encoding metasurface sequence can be obtained with different deflection angle. Fourier convolution operations on the encoding metasurfaces can provide an efficient method in optimizing encoding patterns to achieve continuous scattering beams. The addition and subtraction methods are also applicable to the checkerboard coding mode. The combination of Fourier convolution principle and Pancharatnam–Berry phase coded metasurface in digital signal processing can realize more powerful electromagnetic wave manipulation capability.
Słowa kluczowe
Czasopismo
Rocznik
Strony
297--323
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
  • Centre for THz Research, China Jiliang University, Hangzhou 310018, China
autor
  • Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
autor
  • Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
  • Centre for THz Research, China Jiliang University, Hangzhou 310018, China
autor
  • Hangzhou Hangxin Qihui Technology Co., Ltd, Hangzhou, China
autor
  • Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
autor
  • Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Bibliografia
  • [1] JUNXIANG HUANG, TAO FU, HAIOU LI, ZHAOYU SHOU, XI GAO, A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface, Chinese Optics Letters 18(1), 2020, article 013102, DOI: 10.1364/COL.18.013102.
  • [2] OBULKASIM OLUGH, ZI-LIANG LI, BAI-SONG XIE, Asymmetric pulse effects on pair production in polarized electric fields, High Power Laser Science and Engineering 8(4), 2020, article e38, DOI: 10.1017/hpl.2020.36.
  • [3] LIN LI, QUAN YUAN, RUN CHEN, XIUJUAN ZOU, WENBO ZANG, TIANYUE LI, GAIGE ZHENG, SHUMING WANG, ZHENLIN WANG, SHINING ZHU, Chromatic dispersion manipulation based on metasurface devices in the mid-infrared region, Chinese Optics Letters 18(8), 2020, article 082401, DOI: 10.1364/COL.18.082401.
  • [4] SHUYUN TENG, QI ZHANG, HAN WANG, LIXIA LIU, HAORAN LV, Conversion between polarization states based on metasurface, Photonics Research 7(3), 2019, pp. 246–250, DOI: 10.1364/PRJ.7.000246.
  • [5] HE X., LU H., Graphene-supported tunable extraordinary transmission, Nanotechnology 25(32), 2014, article 325201, DOI: 10.1088/0957-4484/25/32/325201.
  • [6] HE X., Tunable terahertz graphene metamaterials, Carbon 82, 2015, pp. 229–237, DOI: 10.1016/j.carbon.2014.10.066.
  • [7] GUAN H., CHEN H., WU J., JIN Y., KONG F., LIU S., YI K., SHAO J., High-efficiency, broad-bandwidth metal/multilayer-dielectric gratings, Optics Letters 39(1), 2014, pp. 170–173, DOI: 10.1364/OL.39.000170.
  • [8] HE X., ZHONG X., LIN F., SHI W., Investigation of graphene assisted tunable terahertz metamaterials absorber, Optical Materials Express 6(2), 2016, pp. 331–342, DOI: 10.1364/OME.6.000331.
  • [9] AKRAM M.R., DING G., CHEN K., FENG Y., ZHU W., Ultrathin single layer metasurfaces with ultra‐wideband operation for both transmission and reflection, Advanced Materials 32(12), 2020, article 1907308, DOI: 10.1002/adma.201907308.
  • [10] AKRAM M.R., MEHMOOD M.Q., BAI X., JIN R., PREMARATNE M., ZHU W., High efficiency ultrathin transmissive metasurfaces, Advanced Optical Materials 7(11), 2019, article 1801628, DOI: 10.1002/adom.201801628.
  • [11] JUNYU XIAO, RUIWEN XIAO, RONGXUAN ZHANG, ZHIXIONG SHEN, WEI HU, LEI WANG, YANQING LU, Tunable terahertz absorber based on transparent and flexible metamaterial, Chinese Optics Letters 18(9), 2020, article 092403, DOI: 10.1364/COL.18.092403.
  • [12] LEI XIA, YUANZHANG HU, WENYU CHEN, XIAOGUANG LI, Decoupling of the position and angular errors in laser pointing with a neural network method, High Power Laser Science and Engineering 8(3), 2020, article e28, DOI: 10.1017/hpl.2020.29.
  • [13] FEI DING, YITING CHEN, BOZHEVOLNYI S.I., Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting, Photonics Research 8(5), 2020, pp. 707–714, DOI: 10.1364/PRJ.386655.
  • [14] HORNUNG J., ZOBUS Y., BOLLER P., BRABETZ C., EISENBARTH U., KÜHL T., MAJOR ZS., OHLAND J.B., ZEPF M., ZIELBAUER B., BAGNOUD V., Enhancement of the laser-driven proton source at PHELIX, High Power Laser Science and Engineering 8(2), 2020, article 02000e24, DOI: 10.1017/hpl.2020.23.
  • [15] AKRAM M., BAI X., JIN R., VANDENBOSCH G., PREMARATNE M., ZHU W., Photon spin Hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves, IEEE Transactions on Antennas and Propagation 67(7), 2019, pp. 4650–4658, DOI: 10.1109/TAP.2019.2905777.
  • [16] HAORAN LV, XIAOQING LU, YUANSHENG HAN, ZHEN MOU, CHANGDA ZHOU, SHUYUN WANG, SHUYUN TENG, Metasurface cylindrical vector light generators based on nanometer holes, New Journal of Physics 21, 2019, article 123047, DOI: 10.1088/1367-2630/ab5f44.
  • [17] HAN WANG, LIXIA LIU, CHANGDA ZHOU, JILIAN XU, MEINA ZHANG, SHUYUN TENG, YANGJIAN CAI, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 2019, pp. 317–324, DOI: 10.1515/nanoph-2018-0214.
  • [18] QI ZHANG, HAN WANG, LIXIA LIU, SHUYUN TENG, Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination, Optics Express 26(18), 2018, pp. 24145–24153, DOI: 10.1364/OE.26.024145.
  • [19] HAN WANG, LIXIA LIU, CHUNXIANG LIU, XING LI, SHUYUN WANG, QING XU, SHUYUN TENG, Plasmonic vortex generator without polarization dependence, New Journal of Physics 20, 2018, article 033024, DOI: 10.1088/1367-2630/aaafbb.
  • [20] LAMPROU T., LIONTOS I., PAPADAKIS N., TZALLAS P., A perspective on high photon flux nonclassical light and applications in nonlinear optics, High Power Laser Science and Engineering 8, 2020, article e42, DOI: 10.1017/hpl.2020.44.
  • [21] FU Y.Y., XU Y.D., CHEN H.Y., Negative refraction based on purely imaginary metamaterials, Frontiers of Physics 13(4), 2018, article 134206, DOI: 10.1007/s11467-018-0781-3.
  • [22] HE Z.Z., ZHU Y.B., WU H.A., Self-folding mechanics of graphene tearing and peeling from a substrate, Frontiers of Physics 13(3), 2018, article 138111, DOI: 10.1007/s11467-018-0755-5.
  • [23] RUBIN S., FAINMAN Y., Nonlinear, tunable, and active optical metasurface with liquid film, Advanced Photonics 1(6), 2019, article 066003, DOI: 10.1117/1.AP.1.6.066003.
  • [24] SONG Z.Y., CHU Q.Q., SHEN X.P., LIU Q.H., Wideband high-efficient linear polarization rotators, Frontiers of Physics 13(5), 2018, article 137803, DOI: 10.1007/s11467-018-0779-x.
  • [25] ZHAO W., CHU H., TAO Z., HANG Z.H., Acoustic transmissive cloaking using zero-index materials and metasurfaces, Applied Physics Express 12(5), 2019, article 054004, DOI: 10.7567/1882-0786/ab14ad.
  • [26] CUI T.J., QI M.Q., WAN X., ZHAO J., CHENG Q., Coding metamaterials, digital metamaterials and programmable metamaterials, Light: Science & Applications 3(10), 2014, article e218, DOI: 10.1038/lsa.2014.99.
  • [27] HU Z, XU T., TANG R., GUO H.J., XIAO S.Y., Geometric-phase metasurfaces: from physics to applications, Laser & Optoelectronics Progress 56(20), 2019, pp. 113–133.
  • [28] HE X., ZHONG X., LIN F., SHI W., Investigation of graphene assisted tunable terahertz metamaterials absorber, Optical Materials Express 6(2), 2016, pp. 331–342, DOI: 10.1364/OME.6.000331.
  • [29] BO FANG, ZHIYU CAI, YANDONG PENG, CHENXIA LI, ZHI HONG, XUFENG JING, Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials, Journal of Electromagnetic Waves and Applications 33(11), 2019, pp. 1375–1390, DOI: 10.1080/09205071.2019.1608868.
  • [30] FANG B., LI B., PENG Y., LI C., HONG Z., JING X., Polarization‐independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure, Microwave and Optical Technology Letters 61(10), 2019, pp. 2385–2391, DOI: 10.1002/mop.31890.
  • [31] WEIMIN WANG, XUFENG JING, JINGYIN ZHAO, YINYAN LI, YING TIAN, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure, Optica Applicata 47(2), 2017, pp. 183–198, DOI: 10.5277/oa170202.
  • [32] JIANG L., FANG B., YAN Z., LI C., FU J., GAN H., HONG Z., JING X., Improvement of unidirectional scattering characteristics based on multiple nanospheres array, Microwave and Optical Technology Letters 62(6), 2020, pp. 2405–2414, DOI: 10.1002/mop.32328.
  • [33] JING X., GUI X., ZHOU P., HONG Z., Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter, Journal of Lightwave Technology 36(12), 2018, pp. 2322–2327, DOI: 10.1109/JLT.2018.2808339.
  • [34] XIA R., JING X., GUI X., TIAN Y., HONG Z., Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Optical Materials Express 7(3), 2017, pp. 977–988, DOI: 10.1364/OME.7.000977.
  • [35] ZHAO J., JING X., WANG W., TIAN Y., ZHU D., SHI G., Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region, Optics & Laser Technology 95, 2017, pp. 56–62, DOI: 10.1016/j.optlastec.2017.04.001.
  • [36] TIAN Y., JING X., GAN H., LI C., HONG Z., Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces, Frontiers of Physics 15, 2020, article 62502, DOI: 10.1007/s11467-020-1013-1.
  • [37] JING X., JIN S., TIAN Y., LIANG P., DONG Q., WANG L., Analysis of the sinusoidal nanopatterning grating structure, Optics & Laser Technology 48, 2013, pp. 160–166, DOI: 10.1016/j.optlastec.2012.10.008.
  • [38] JING X., XU Y., GAN H., HE Y., HONG Z., High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region, IEEE Access 7, 2019, pp. 144945–144956, DOI: 10.1109/ACCESS.2019.2945119.
  • [39] JIANG L., FANG B., YAN Z., FAN J., QI C., LIU J., HE Y., LI C., JING X., GAN H., HONG Z., Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure, Optics & Laser Technology 123, 2020, article 105949, DOI: 10.1016/j.optlastec.2019.105949.
  • [40] RUIQI MAO, GUANGMING WANG, TONG CAI, KAIYUE LIU, DENGPAN WANG, BORUI WU, Ultra-thin and high-efficiency full-space Pancharatnam–Berry metasurface, Optics Express 28(21), 2020, pp. 31216–31225, DOI: 10.1364/OE.405086.
  • [41] XU H.X., WANG G.M., CAI T., XIAO J., ZHUANG Y.Q., Tunable Pancharatnam–Berry metasurface for dynamical and high-efficiency anomalous reflection, Optics Express 24(24), 2016, pp. 27836–27848, DOI: 10.1364/OE.24.027836.
  • [42] SHAO L., PREMARATNE M., ZHU W.R., Dual-functional coding metasurfaces made of anisotropic all-dielectric resonators, IEEE Access 7, 2019, pp. 45716–45722, DOI: 10.1109/ACCESS.2019.2908830.
  • [43] YU N.F., GENEVET P., KATS M.A., AIETA F., TETIENNE J.P., CAPASSO F., GABURRO Z., Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054), 2011, pp. 333–337, DOI: 10.1126/science.1210713.
  • [44] MA Z., HANHAM S., ALBELLA P., NG B., LU H., GONG Y., MAIER S., HONG M., Terahertz all-dielectric magnetic mirror metasurfaces, ACS Photonics 3(6), 2016, pp. 1010–1018, DOI: 10.1021/acsphotonics.6b00096.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bd18065-e0bc-44de-9b05-b6e5a1206dd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.