PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the Properties of Cold Work Tool Steels with the Same Hardness but Different Manufacturing Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The required important properties of cold work tool steels are hardness, wear resistance, suitable toughness and in many cases corrosion resistance. For cold work tool steels, hardness can be well controlled by heat treatment, but steels of the same hardness do not necessarily have similar wear, corrosion resistance or even toughness. These properties are influenced by the chemical composition of the steels and their manufacturing processes. The study is performed on Böhler K390 PM produced by powder metallurgy (PM) process, Böhler K360 ESR made by electro-slag remelting (ESR) methods and Böhler K110 produced conventionally (C). The specimens were heat treated to obtain the same hardness of 61 HRC. It was made a comparative test of the abrasive wear resistance, corrosion resistance and toughness of the heat-treated cold work tool steel test specimens. The comparative test results show that the Böhler K110 steel has the best corrosion resistance against the 20% acetic acid, and the Böhler K390 PM steel has the best wear resistance and toughness. The goal of the research was to find the optimal cold work tool steel quality for special applications (as a function of wear resistance, corrosion resistance and toughness). The K390 reached the best wear resistance which is two times better than the K360 and about ten times better than the K110. About the corrosion test results, it can be concluded that K110 showed the lowest weight loss after the corrosion test, and the K390 and K360 showed higher weight loss and lower corrosion resistance. Impact energy values from the Charpy impact test were the highest in the case of K390 followed by the K360 and the K110. The results were confirmed by the microscopic analysis.
Twórcy
  • Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, 1081 Budapest Népszínház u. 8. Hungary
  • Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, 1081 Budapest Népszínház u. 8. Hungary
autor
  • Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, 1081 Budapest Népszínház u. 8. Hungary
  • Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, 1081 Budapest Népszínház u. 8. Hungary
  • Częstochowa University of Technology, Department of Physics, 42-214 Częstochowa
  • Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, Department of Technologies and Equipements for Materials Processing, Bdul. Mangeron, No. 51 700050 Iasi, Romania
  • Romanian Inventors Forum, 3 Sf. Petru Movila St., L11, 3-3, 700089 Iasi, Romania
  • Academy of Romanian Scientists, 54 Splaiul Independentei St., Sect. 5, 050094 Bucharest, Romania
  • Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, Department of Technologies and Equipements for Materials Processing, Bdul. Mangeron, No.51 700050 Iasi, Romania
  • Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
Bibliografia
  • [1] G. Roberts, G. Krauss, R. Kennedy, Tool Steels, 5th edition, Materials Park, OH ASM International pp. 7-28, 1998,
  • [2] Global Metal Forming Machine Tools Market 2016-2020, December 2015. http://www.researchhandmarkets.com/reports/3534920/global-metal-frming-machine-tools-market-2016 (accessed on 20 October 2023).
  • [3] L. Bourithis, G.D. Papadimitriou, J. Sideris, Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness. Tribology International 39, 479-489 (2006).
  • [4] P. Jovicevic-Klug, L. Tóth, B. Podgornic, Comparison of K340 Steel Microstructure and Mechanical Properties using Shallow and Deep Cryogenic Treatment. Coatings 12, 1296 (2022). DOI: https://doi.org/10.3390/coatings12091296
  • [5] M. Algarni, Mechanical Properties and Microstructure Characterization of AISI ”D2” and ”O1” Cold Work Tool Steels. Metals 9, 1169 (2019). DOI: https://doi.org/10.3390/met9111169
  • [6] F. Kara, Y. Kücük, O.Özbek, A.N.Özbek, S.M. Gök, E. Altas, I. Uygur, Effect of cryogenic treatment on wear behaviour of Sleipner cold work tool steel. Tribology International 180, 108301 (2023).
  • [7] S. Eksi, Effect of Different Heat Treatment on Mechanical Properties of AISI Steels. Sakarya University Journal of Science 24 (3), 472-491 (2020).
  • [8] L. Tóth, E.R. Fábián, The Effects of Quenching and Tempering Treatment ont he Hardness and Microstructures of a Cold Work Steel. International Journal of Engineering and Management Sciences (IJEMS) 4, 1 (2019). DOI: https://doi.org/10.21791/IJMS.2019.1.36.
  • [9] S. Brajcinovic, A. Begic Hadzipasic, L. Slocar Benic, Influence of Medium on Corrosion and Microstructural Properties of K110 Tool Steel for Cold Work. Metal, (2020). DOI: https://doi.org/10.37904/metal2020.3558
  • [10] A. Thakur, S. Kaya, A. Kumar, Recent Trends in the Characterization and Application Progress of Nano-Modified Coatings in Corrosion Mitigation of Metals and Alloys. Appl. Sci. 13, 730 (2023). DOI: https://doi.org/10.3390/app13020730
  • [11] M.M. Alemnezhad, A. Ghaffarinejad, F. Omidali, White turnip bark extract as a new green and cost-effective corrosion bioinhibitor for carbon steel in 1.0 M HCl solution: experimental and theoretical studies, Chemical Physics Letters 831, 140855 (2023). DOI: https://doi.org/10.1016/j.cplett.2023.140855
  • [12] N. Nnaji, P. Sen, I.Y. Openda, A. Berisha, O. Dagdag, E.E. Ebenso, T. Nyokong, Assessing the potentials of free base and gallium metalated tertbutylphthalocyanines as aluminium corrosion inhibitors, International Journal of Electrochemical Science 18, 12, 100345 (2023). DOI: https://doi.org/10.1016/j.ijoes.2023.100345
  • [13] L. Tóth, Examination of the Properties and Structure of Tool Steel EN 1.2379 Due to Different Heat Treatments. European Journal of Materials Science and Engineering 3, 3, 165-170 (2018). www.ejmse.tuiasi.ro
  • [14] Voestalpine Böhler Edelstahl GmbH&Co KG, Böhler K110 Datenblatt, 2023. bohler-edelstahl.com/de/products/k110/ (accessed on 20 September 2023).
  • [15] Hariningsih, H.; Lutiyatmi, L.; Daryanto, T. Effects of heat treatment on microstructure and hardness of D2 tools. Applied Research and Smart Technology 3 (1), (2022).
  • [16] Voestalpine Böhler Edelstahl GmbH&Co KG, Böhler K360 Datenblatt, 2023, bohler-edelstahl.com/de/products/k360/ (accessed on 20 September 2023).
  • [17] R. Pierer, R. Schneider, H. Hiebler, The Behaviour of Two New Tool Steels Regarding Dimensional Change, Proc. of the 6th International Tooling Conference, Karlstad, Sweden (2002).
  • [18] Voestalpine Böhler Edelstahl GmbH&Co KG, Böhler K390 MICROCLEAN (PM) Datenblatt, 2023, bohler-edelstahl.com/de/products/k390/ (accessed on 20 September 2023).
  • [19] K. Surekha, A. Els-Botes, Effect of Cryotreatment on Tool Wear Behaviour of Bohler K390 and AISI H13 Tool Steel During Friction Stir Welding of Copper. Trans Indian Institute of Metals, (2012). DOI: https://doi.org/10.1007/s1266-012-0127-8
  • [20] Y. Zhao, S. He, L. Li, Application of Hot Isostatic Pressing in Nickel-Based Single Crystal Superalloys. Crystals 12 (6), 805 (2022). DOI: https://doi.org/10.3390/cryst12060805
  • [21] E.R. Fábián, L. Tóth, Cs. Huszák, Examination of Heat Treatment Effect on Properties and Behaviour of Tool Steel. Műszaki Tudományos Közlemények (2019). ISSN: 2393-1280; 2668-1390.
  • [22] B. Arh, B. Podgornik, J. Burja, Electroslag Remelting: A proces overview. Materials and Technology 50, 6, 971-979 (2016). ISSN 1580-2949.
  • [23] A. Pribulova, P. Futás, M. Bartosova, Cleanless and Mechanical Properties of Steel after Remelting under Different Slags by ESR. Key Engineering Materials 635, 112-117 (2014).
  • [24] H. Halfa, A.M. Reda, Electroslag Remelting of High Technological Steels. Journal of Minerals and Materials Characterization and Engineering 3, 444-457 (2015). DOI: http://dx.doi.org/10.4236/jmmce.2015.36047
  • [25] N.F. Yakovlev, Yu. M. Skrynchenko, S.I. Tishaev, L.D. Moshkevich, A.N. Prohorov, Yu. M. Politaev, Electroslag Remelting for The Production of Tool Steels. Electroslag Technology, (1991). DOI: https://doi.org/10.1007/978-1-4612-3018-2_7
  • [26] A. Fölzer, C. Tornberg, Advantages in processing technology for powder-metallurgical tool steels and high-speed steels giving excellent cleanliness and homogeneity. Materials Science Forum 426-432, 4167-4172 (2003). DOI: https://doi.org/10.4028/www.scientific.net/MSF.426-432.4167
  • [27] C. Tornberg, A. Fölzer, New optimised manufacturing route for PM tool steels and high-speed steels. 6th International Tooling Conference: The Use of Tool Steels, Karlstadt, Sweden. 2002 Sept.
  • [28] Böhler Edelstahl GmbH&Co KG, High Performance Steels Produced by Powder Metallurgy Methods MICROCLEAN 3rd Generation, ST035 DE- 08.2014-1.000CD, www.bohler-edelstahl.com (accessed on 20 September 2023).
  • [29] G. Körösi, L. Tóth, P. Pinke, Investigations to increase the PVC granulating tool life. Proceedings of the Engineering Symposium at Bánki, (2022).
  • [30] T. Kovács, L. Dévényi, Wear test procedures developments. Anyagok világa 5/1, (2004).
  • [31] S. Kumar, M. Nagaraj, N.K. Khedkar, A. Bongale, Influence of deep cryogenic treatment on dry sliding wear behaviour of AISI D3 die steel, Materials Research Express 5, 11, 116525, 1-9 (2018). DOI: https://doi.org/10.1088/2053-1591/aadeba
  • [32] J. Xiong, H. Li, L. Kong, X. Zhang, W. Cao, Y. Wang, Dependence of Charpy Impact Properties of Fe-30Mn-0,05C Steel on Microstructure. Crytals 13 (2), 353 (2023). DOI: https://doi.org/10.3390/cryst13020353
  • [33] Y. Liu, Q. Ding, X. Wei, Y. Zhang, Z. Zhang, H. Bei, The Microstructure and Mechanical Properties of Welded Ni-Based Hostalloy X Superalloy. Crytals 12, 1336 (2022). DOI: https://doi.org/10.3390/cryst12101336
  • [34] J. Chen, Y. Liu, Y. Wang, R. Xu, Q. Shi, J. Chen, Y. Wu, Design and Optimization of Heat Treatment Process Parameters for High-Molybdenum-Vanadium High-speed Steel for Rolls. Materials 16, 7103 (2023). DOI: https://doi.org/10.3390/ma16227103
  • [35] M.G. Minciuna, D.C. Achitei, P. Vizureanu, M. Benchea, A.V. Sandu, The Effect of Heat Treatment and Corrosion Behavior of AISI420, IOP Conference Series: Materials Science and Engineering 374, 1, 012039 (2018).
  • [36] M.G. Minciuna, P. Vizureanu, C. Hanganu, D.C. Achitei, D.C. Popescu, S. Focsaneanu, The structural characterization of some biomaterials, type AISI 310, used in medicine. IOP Conference Series: Materials Science and Engineering 133, 1, 012019 (2016).
Uwagi
The authors would like to express their gratitude to Titan 94 Ltd. for the technical support.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bcafcc6-c117-4a38-b8ba-cf3a1ba3cc35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.