Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Precipitation anomalies have a significant impact on both natural environmental and human activity. Long lasting drought analysis has received great attention on a global and regional scale while prolonged rainy periods so far have been much less studied. However, long-term precipitation events are also important and threatening. The situation around the Baltic Sea in 2017 revealed that such periods could cause significant losses in agriculture. The rainy periods of 30, 60, and 90 consecutive days in a given year during which the maximum precipitation amount was recorded in the eastern part of the Baltic Sea region were analysed in this study. Daily precipitation amount data from the E-OBS gridded dataset was used. The investigation covered a period from 1950 to 2019. The changes in magnitude and timing of such rainy periods were evaluated. It was found that the annual precipitation in the eastern part of the Baltic Sea region increased significantly during the analysed period. Positive changes were observed throughout the year except during April and September. The amounts of precipitation during rainy periods of different duration also increased in most of the investigated areas but changes were mostly insignificant. Consequently, a decrease in the ratio of precipitation amount during the rainy period to annual precipitation was observed. It was also found that the rainy periods occurred earlier, especially in the case of the rainy periods of 60- and 90-days durations. Such tendencies pose an increasing threat to agriculture.
Czasopismo
Rocznik
Tom
Strony
141--150
Opis fizyczny
Bibliogr. 41 poz., map., rys., wykr.
Twórcy
autor
- Institute of Geosciences, Vilnius University, Vilnius, Lithuania
autor
- Institute of Geosciences, Vilnius University, Vilnius, Lithuania
autor
- Climate and Research Division, Lithuanian Hydrometeorological Service, Vilnius, Lithuania
autor
- Institute of Geosciences, Vilnius University, Vilnius, Lithuania
Bibliografia
- 1. Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Tank, A.M.G.K., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, S., Kumar, K.R., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D.B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., Vazquez-Aguirre, J.L., 2006. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109.
- 2. Andrade, L., O’Dwyer, J., O’Neill, E., Hynds, P., 2018. Surface water flooding, groundwater contamination, and enteric disease in developed countries: A scoping review of connections and consequences. Environ. Pollut. 236, 540-549. https://doi.org/10.1016/j.envpol.2018.01.104
- 3. Avotniece, Z., Rodinov, V., Lizuma, L., Briede, A., Kļavi ̧nš, M., 2010. Trends in the frequency of extreme climate events in Latvia. Baltica 23 (2), 135-148.
- 4. Briede, A., Lizuma, L., 2010. Analysis of high temperature extremes and climatological drought long-term tendencies in Latvia. In: 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, Sept. 13-17, 2010
- 5. Zürich, Switzerland, id. EMS2010-EMS2370. Canales, F.A., Gwoździej-Mazur, J., Jadwiszczak, P., Struk-Sokołowska, J., Wartalska, K., Wdowikowski, M., Kaźmierczak, B., 2020. Long-Term Trends in 20-Day Cumulative Precipitation for Residential Rainwater Harvesting in Poland. Water 12 (7), 1932. https://doi.org/10.3390/w12071932
- 6. Chen, D., Chen, H.V., 2013. Using the Köppen classification to quantify climate variation and change: An example for 1901-2010. Environ. Dev. 6, 69-79. https://doi.org/10.1016/j.envdev.2013.03.007
- 7. Christensen, O.B., Kjellström, E., Zorita, E.The BACC II Author Team, 2015. Projected Change-Atmosphere. Second Assessment of Climate Change for the Baltic Sea Basin. Reg. Clim. St., Springer, Cham https://doi.org/10.1007/978-3-319-16006-1_11
- 8. Cornes, R.C., van der Schrier, G., van den Besselaar, E.J.M., Jones, P.D., 2018. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. - Atmos. 123, 9391-9409. https://doi.org/10.1029/2017JD028200
- 9. Eekhout, J.P.C., Hunink, J.E., Terink, W., de Vente, J., 2018. Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sc. 22, 5935-5946. https://doi.org/10.5194/hess-22-5935-2018
- 10. European Union (EU), 2018. Short-term outlook for EU agricultural markets - Spring 2018, 20. Falloon, P., Betts, R., 2010. Climate impacts on European agriculture and water management in the context of adaptation and mitigation -The importance of an integrated approach. Sci. Total Environ. 408 (23), 5667-5687. https://doi.org/10.1016/j.scitotenv.2009.05.002
- 11. Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., Seneviratne, S.I., 2014. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716-721. https://doi.org/10.1038/ngeo2247
- 12. Held, I.M., Soden, B.J., 2006. Robust Responses of the Hydrological Cycle to Global Warming. J. Climate 19 (21), 5686-5699. https://doi.org/10.1175/JCLI3990.1
- 13. Huo, R., Li, L., Chen, H., Xu, C., Chen, J., Guo, S., 2021. Extreme Precipitation Changes in Europe from the Last Millennium to the End of the Twenty-First Century. J. Climate 34 (2), 567-588. https://doi.org/10.1175/JCLI-D-19-0879.1
- 14. Ionita, M., Nagavciuc, V., Kumar, R., Rakovec, O., 2020. On the curious case of the recent decade, mid-spring precipitation deficyt in central Europe. NPJ Clim. Atmos. Sci. 3 (49). https://doi.org/10.1038/s41612-020-00153-8
- 15. Jaagus, J., Briede, A., Rimkus, E., Remm, K., 2014. Variability and trends in daily minimum and maximum temperatures and in the diurnal temperature range in Lithuania, Latvia and Estonia in 1951—2010. Theor. Appl. Climatol. 118, 57-68. https://doi.org/10.1007/s00704-013-1041-7
- 16. Jaagus, J., Briede, A., Rimkus, E., Sepp, M., 2018. Changes in precipitation regime in the Baltic countries in 1966-2015. Theor. Appl. Climatol. 131 (1-2), 433-443. https://doi.org/10.1007/s00704-016-1990-8
- 17. JRC, 2017a. JRC MARS Bulletin Crop monitoring in Europe November 2017, 25 (11). JRC, 2017b. JRC MARS Bulletin Crop monitoring in Europe October 2017, 25 (10).
- 18. Kharin, V.V., Zwiers, F.W., Zhang, X., Hegerl, G.C., 2007. Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. J. Climate 20 (8), 1419-1444.
- 19. Kovats, R.S., Valentini, R., Bouwer, L.M., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell, M., Soussana, J.F., Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L., 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1267-1326.
- 20. Kundzewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L.M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G.R., Kron, W., Benito, G., Honda, Y., Takahashi, K., Sherstyukov, B., 2014. Flood risk and climate change: global and regional perspectives. Hydrolog. Sci. J. 59 (1), 1-2828. https://doi.org/10.1080/02626667.2013.857411
- 21. Leng, G., 2021. Maize yield loss risk under droughts in observations and crop models in the United States. Environ. Res. Lett. 16, 024016. https://doi.org/10.1088/1748-9326/abd500
- 22. Li, Y., Guan, K., Schnitkey, G.D., DeLucia, E., Peng, B., 2019. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25, 2325-2337. https://doi.org/10.1111/gcb.14628
- 23. Lobell, D.B., Burke, M.B., 2008. Why are agricultural impacts of climate change so uncertain? The importance of temperaturę relative to precipitation. Environ. Res. Lett. 3, 034007. https://doi.org/10.1088/1748-9326/3/3/034007
- 24. Miotliński, K., Postma, D., Kowalczyk, A., 2012. Variable infiltration and river flooding resulting in changing groundwater quality - A case study from Central Europe. J. Hydrol. 414-415, 211-219. https://doi.org/10.1016/j.jhydrol.2011.10.034
- 25. Murray-Tortarolo, G., Jaramillo, V.J., Maass, M., Friedlingstein, P., Sitch, S., 2017. The decreasing range between dry- and wetseason precipitation over land and its effect on vegetation primary productivity. PLoS ONE 12 (12), e0190304. https://doi.org/10.1371/journal.pone.0190304
- 26. Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R.A., Carrao, H., Spinoni, J., Vogt, J., Feyen, L., 2018. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 45, 3285-3296. https://doi.org/10.1002/017GL076521
- 27. Rimkus, E., Kažys, J., Bukantis, A., Krotovas, A., 2011. Temporal variation of extreme precipitation events in Lithuania. Oceanologia 53 (1-TI), 259-277. https://doi.org/10.5697/oc.53-1-TI.259
- 28. Rimkus, E., Briede, A., Jaagus, J., Stonevicius, E., Kilpys, J., Viru, B., 2018. Snow-cover regime in Lithuania, Latvia and Estonia and its relationship to climatic and geographical factors in 1961 -2015. Boreal Environ. Res. 23, 193-208. Rimkus, E., Stonevičius, E., Kilpys, J., Mačiulytė , V., Valiukas, D., 2017. Drought identification in the eastern Baltic region using NDVI. Earth Syst. Dynam. 8 (3), 627-637. https://doi.org/10.5194/esd-8-627-2017
- 29. Rimkus, E., Valiukas, D., Kažys, J., Gečaitė , I., Stonevičius, E., 2012. Dryness dynamics of the Baltic Sea region. Baltica 25 (2), 129-142. https://doi.org/10.5200/baltica.2012.25.13
- 30. Rush, W.D., Kiehl, J.K., Shields, C.A., Zachos, J.C., 2021. Increased frequency of extreme precipitation events in the North Atlantic during the PETM: Observations and theory. Palaeogeogr. Palaeocl. 568, 110289. https://doi.org/10.1016/j.palaeo.2021.110289
- 31. Schwalm, C.R., Anderegg, W.R.L., Michalak, A.M., Fisher, J.B., Biondi, F., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Wolf, A., Huntzinger, D.N., Schaefer, K., Cook, R., Wei, Y., Fang, Y., Hayes, D., Huang, M., Jain, A., Tian, H., 2017. Global patterns of drought recovery. Nature 548, 202-205. https://doi.org/10.1038/nature23021
- 32. Spinoni, J., Vogt, J.V., Naumann, G., Barbosa, P., Dosio, A., 2018. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 38, 1718-1736. https://doi.org/10.1002/joc.5291
- 33. Steduto, P., Hsiao, T.C., Fereres, Raes D., 2012. Crop yield response to water. FAO Irrigation and Drainage, Paper no 66. Tabari, H., Madani, K., Willems, P., 2020. The contribution of anthropogenic influence to more anomalous extreme precipitation in Europe. Environ. Res. Lett. 15 (10), 104077. https://doi.org/10.1088/1748-9326/abb268
- 34. Tammets, T., 2007. Distribution of extreme wet and dry days in Estonia in last 50 years. P. Est. Acad. Sci. Eng. 13 (3), 252-259.
- 35. Tammets, T., 2010. Estimation of extreme wet and dry days through moving totals in precipitation time series and some possibilities for their consideration in agrometeorological studies. Agron.
- 36. Tapia-Silva, F.-O., Itzerott, S., Foerster, S., Kuhlmann, B., Kreibich, H., 2011. Estimation of flood losses to agricultural crops using remote sensing. Phys. Chem. Earth, Parts A/B/C 36, 253-265. https://doi.org/10.1016/j.pce.2011.03.005
- 37. Toreti, A., Belward, A., Perez-Dominguez, I., Naumann, G., Luterbacher, J., Cronie, O., Seguini, L., Manfron, G., Lopez-Lozano, R., Baruth, B., van den Berg, M., Dentener, F., Ceglar, A., Chatzopoulos, T., Zampieri, M., 2019. The exceptional 2018 European water seesaw calls for action on adaptation. Earth’s Future 7, 652-663. https://doi.org/10.1029/2019EF001170
- 38. Van den Besselaar, E.J.M., Tank, A.M.G.K., Buishand, T.A., 2013. Trends in European precipitation extremes over 1951-2010. Int. J. Climatol. 33, 2682-2689. https://doi.org/10.1002/joc.3619
- 39. Westra, S., Alexander, L.V., Zwiers, F.W., 2013. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Climate 26 (11), 3904-3918. https://doi.org/10.1175/JCLI-D-12-00502.1
- 40. Zolina, O., Simmer, C., Belyaev, K., Gulev, S.K., Koltermann, P., 2013. Changes in the Duration of European Wet and Dry Spells during the Last 60 Years. J. Climate 26 (6), 2022-2047. https://doi.org/10.1175/JCLI-D-11-00498.1
- 41. Zolina, O., Simmer, C., Gulev, S.K., Kollet, S., 2010. Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett. 37, L06704. https://doi.org/10.1029/2010GL042468
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bc72746-2bc3-4586-99c3-4906ebb37ec7