PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new multi-objective optimization algorithm based on differential evolution and neighborhood exploring evolution strategy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a new optimization algorithm based on Differential Evolution, non-dominated sorting strategy and neighborhood exploration strategy for guaranteeing convergence and diversity through the generation of neighborhoods of different sizes to potential candidates in the population is presented. The performance of the algorithm proposed is validated by using standard test functions and metrics commonly adopted in the specialized literature. The sensitivity analysis of some relevant parameters of the algorithm is performed and compared with the classical DE algorithm without the strategy of neighborhood exploration and with other state-of-the-art evolutionary algorithms.
Rocznik
Strony
259--267
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • School of Chemical Engineering, Federal University of Uberlàndia
  • School of Mechanical Engineering, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Campus Santa Mônica, P.O. Box 593, 38408-144, Uberlândia-MG, Brazil
Bibliografia
  • [1] K. Deb, Multi-objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chichester-UK, ISBN 0-471-87339-X, 2001.
  • [2] E. Zitzler, M. Laummans and L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK Report No. 103, Swiss Federal Institute of Technology (ETH), Computer Engineering and Networks Laboratory (TIK), 2001.
  • [3] F. S. Lobato, Multi-objective Optimization for Engineering System Design, Thesis, Federal University of Uberlándia, Brazil, 2008 (in portuguese).
  • [4] R. Storn and K. Price, Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, International Computer Science Institute, Vol. 12, pages 1–16, 1995.
  • [5] N. K. Madavan, Multiobjective Optimization using a Pareto Differential Evolution Approach, IEEE Service Center, Vol. 2, pages 1145–1150, 2002.
  • [6] F. Xue, A. C. Sanderson and R. J. Graves, Paretobased Multi-Objective Differential Evolution, In Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Vol. 2, pages 862–869, 2003.
  • [7] B. V. Babu, P. G. Chakole and J. H. S. Mubeen, Multi-objective differential evolution (mode) for optimization of adiabatic styrene reactor, Chemical Engineering Science, Vol. 60, pages 4822–4837, 2005.
  • [8] F. S. Lobato, A. J. Silva-Neto and V. Steffen Jr., Solution of Inverse Radiative Transfer Problems in Two-layer Participating Media with Differential Evolution, International Conference on Engineering Optimization - EngOpt, Rio de Janeiro, Brazil, 2008.
  • [9] F. Y. Edgeworth, Mathematical Physics, P. Keagan, London, England, 1881.
  • [10] V. Pareto, Cours D’Economie Politique, Vol. I and II, F. Rouge, Lausanne, 1896.
  • [11] Schaffer J. D., Multiple Objective Optimization with Vector Evaluated Genetic Algorithms, Ph.D. thesis, Vanderbilt University, 1984.
  • [12] Zitzler E. and Thiele L., Multi-objective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach, IEEE Trans. on Evolutionary Computation, Vol. 3, pages 257–271, 1999.
  • [13] J. Horn and N. Nafpliotis, Multiobjective Optimization using the Niched Pareto Genetic Algorithm, IlliGAL Report 93005, Illinois Genetic Algorithms Laboratory, University of Illinois, Champaign, IL., 1993.
  • [14] N. Srinivas and K. Deb, Multiobjective Optimization using Nondominated Sorting in Genetic Algorithms, Evolutionary Computational, Vol. 2, pages 221–248, 1994.
  • [15] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA II, IEEE Transactions on Evolutionary Computation, Vol. 6, pages 182–197, 2002.
  • [16] R. Storn, K. Price and J. A. Lampinen, Differential Evolution - A Pratical Approach to Global Optimization, Springer - Natural Computing Series, 2005.
  • [17] R. Storn, Differential Evolution Design of an IIRFilter with Requirements for Magnitude and Group Delay, International Computer Science Institute, TR-95-026, 1995.
  • [18] F. S. Wang, T. L. Su, and H. J. Jang, Hybrid Differential Evolution for Problems of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process, Industry Engineering Chemical Research, Vol. 40, pages 2876–2885, 2001.
  • [19] F. S. Lobato and V. Steffen Jr., Engineering System Design with Multi-Objective Differential Evolution, In Procedings in 19th International Congress of Mechanical Engineering - COBEM, 2007.
  • [20] V. C. Mariani, A. G. B. Lima and L. S. Coelho, Apparent Thermal Diffusivity Estimation of the Banana during Drying using Inverse Method, Journal of Food Engineering, Vol. 85, pages 569–579, 2008.
  • [21] E. B. Arruda, F. S. Lobato, M. A. S. Barrozo and V. Steffen Jr., Estimation of Drying Parameters inRotary Dryers using Differential Evolution, 6th International Conference on Inverse Problems in Engineering: Theory and Pratice, Dourdan (Paris), France, 2008.
  • [22] V. C. Mariani, A. G. B. Lima and L. S. Coelho, Apparent Thermal Diffusivity Estimation of the Banana During Drying using Inverse Method, Journal of Food Engineering, Vol. 85, pages 569-579, 2008.
  • [23] F. S. Lobato, C. E. Figueira, R. R. Soares and V.Steffen Jr., A Comparative Study of Gibbs Free Energy Minimization in a Real System Using Heuristic Methods. Computer-Aided Chemical Engineering, Vol .27, pages 1059–1064, 2009.
  • [24] F. S. Lobato, V. Steffen Jr. and A. J. Silva Neto, Estimation of Space-dependent Single Scattering Albedo in Radiative Transfer Problems, Inverse Problems, Design and Optimization Symposium, João Pessoa, Brazil, August 25–27, 2010.
  • [25] F. S. Lobato, V. Steffen Jr. and A. J. Silva Neto, A Comparative Study of the Application of Differential Evolution and Simulated Annealing in Inverse ;Radiative Transfer Problems. Journal of the BrazilianSociety of Mechanical Sciences and Engineering, Vol. XXXII, pages 518–526, 2010.
  • [26] F. S. Lobato, V. Steffen Jr. and A. J. Silva Neto,Self-Adaptive Differential Evolution Based on the Concept of Population Diversity Applied to Simultaneous Estimation of Anisotropic Scattering Phase Function, Albedo and Optical Thickness. Computer Modeling in Engineering & Sciences, Vol. 1, pages 1–17, 2010.
  • [27] H. A. Abbass, The Self-Adaptive Pareto Differential Evolution Algorithm, In Congress on Evolutionary Computation (CEC2002), Vol. 1, pages 831–836, 2002.
  • [28] K. Parsopoulos, D. Taoulis, N. Pavlidis, V. Plagianakos and M. Vrahatis, Vector Evaluated Differential Evolution for Multiobjective Optimization, In CEC2004, IEEE Service Center, Vol. 1, pages 204–211, 2004.
  • [29] R. Angira and B. V. Babu, Non-dominated Sorting Differential Evolution (NSDE): An Extension of Differential Evolution for Multiobjective Optimization, Proceedings of the 2nd Indian International Conference on Artificial Intelligence (IICAI-05), India, 2005.
  • [30] T. Robic and B. Filipic, DEMO: Differential Evolution for Multiobjective Optimization, In C. A. Coello Coello, et al., editors, Evolutionary Multi-Criterion Optimization. Third International Conference, EMO-2005, Vol. 3410, pages 520–533,2005.
  • [31] X. Hu, C. A. C. Coello and Z. Huang, A New Multi-Objective Evolutionary Algorithm: Neighborhood Exploring Evolution Strategy, http://www.lania.mx/~ccoello/EMOO, 2006.
  • [32] E. Zitzler, K. Deb and L. Thiele, Comparison of Multiobjective Evolutionary Algoritms: Empirical Results, Evolutionary Computation Journal, Vol. 8, pages 125–148, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bc6f78e-364d-4a2f-b5fe-b846f81174e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.