
JAISCR, 2011, Vol.1, No.4, pp. 259

A NEW MULTI-OBJECTIVE OPTIMIZATION

ALGORITHM BASED ON DIFFERENTIAL EVOLUTION

AND NEIGHBORHOOD EXPLORING EVOLUTION

STRATEGY

Fran Sérgio Lobato1 and Valder Steffen Jr 2

1School of Chemical Engineering, Federal University of Uberlândia

e-mail:fslobato@feq.ufu.br

2 School of Mechanical Engineering, Federal University of Uberlândia,

Av. João Naves de Ávila 2121, Campus Santa Mônica, P.O. Box 593,

38408-144, Uberlândia-MG, Brazil

e-mail:vsteffen@mecanica.ufu.br

Abstract

In this paper a new optimization algorithm based on Differential Evolution, non-dominated

sorting strategy and neighborhood exploration strategy for guaranteeing convergence and

diversity through the generation of neighborhoods of different sizes to potential candi-

dates in the population is presented. The performance of the algorithm proposed is vali-

dated by using standard test functions and metrics commonly adopted in the specialized

literature. The sensitivity analysis of some relevant parameters of the algorithm is per-

formed and compared with the classical DE algorithm without the strategy of neighbor-

hood exploration and with other state-of-the-art evolutionary algorithms.

1 Introduction

The Multi-objective Optimization Problem

(MOOP) is very common in different areas such as

mathematics, engineering and sciences in general.

This optimization problem is different from that of a

single-objective optimization since MOOP usually

has not only one but a set of noninferior optimal so-

lutions, known as Pareto Curves. Besides, the op-

timality concept for this kind of problem is differ-

ent of the one used in single optimization problems

since in multi-objective optimization it is not possi-

ble to find a single optimal solution that satisfies all

the goals, simultaneously [1, 2].

Traditionally, there are several methods avail-

able in the literature for solving MOOP problems

[1, 3]. These methods follow a preference-based

approach, in which a relative preference vector is

used to scalarize multiple objectives. As classical

optimization methods use a point to point approach,

in which a solution found for a given iteration is

modified to obtain a new solution, the outcome of

using a classical optimization method is a single

optimized solution. On the other hand, the evolu-

tionary algorithms (EAs) can find multiple optimal

solutions in one single simulation run due to their

population-based search approach, being this way

well adapted for multi-objective optimization prob-

lems. More details regarding the methodologies can

be found in the literature [1, 3].

Nowadays, one of the most performing tech-

niques used for the solution of single objective opti-

mization problems is the so-called Differential Evo-

lution Algorithm (DE) as proposed by Storn and

Price [4]. Due to the success of this technique,

several authors have extended its basic ideas to the

context of multi-objective optimization obtaining

good results as compared with those from other well
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known evolutionary algorithms [3, 5, 6, 7, 8].

In this sense, the main goal of this paper is to in-

troduce a systematic methodology for the solution

of multi-objective optimization problems by using

the DE algorithm. This work is organized as fol-

lows. Section 2 presents the general aspects re-

garding the formulation of MOOP. Section 3 shows

the classical heuristic approach for MOOP. A re-

view about DE and its extension to deal with multi-

criteria optimization are presented in Sections 4 and

5 respectively. In Section 6, the proposed method-

ology is discussed. Mathematical applications and

sensitivity analysis for relevant parameters of the

proposed algorithm are presented in Section 7. Fi-

nally, the conclusions are outlined in Section 8.

2 Basic Concepts for

Multi-Objective Optimization

Problems

The notion of optimality for MOOP is different

that the one used for single optimization problems.

The most common idea about multi-objective opti-

mization found in the literature was originally pro-

posed by Francis Ysidro Edgeworth [9] and later

generalized by Vilfredo Pareto [10]. This idea can

be described as follows: “a solution is optimal if it

is dominated by no other feasible solution, which

means that there exists no other solution that is

superior at least in case of one objective function

value, and equal or superior with respect to the

other objective functions values” [10]. This def-

inition leads us to find a set of solutions that is

called the Pareto optimal set, whose corresponding

elements are called non-dominated or non-inferior.

The concept of optimality for single objective prob-

lems is not directly applicable in MOOPs. For this

reason a classification of the solutions is introduced

in terms of Pareto optimality, according to the fol-

lowing definitions [1]:

Multi-objective Optimization

Problem (MOOP):

Minimize [ f1(x) f2(x) ... fk(x)] (1)

subject to m inequality and l equality constraints

gi(x)≤ 0, i = 1, ..,m (2)

h j(x) = 0, j = 1, .., l (3)

and design space defined according to the decision

(or design) variables

xU
n ≤ xn ≤ xL

n , n = 1, ...,N. (4)

where k is the number of objective functions fi:

R
N→ R.

Non-dominated Set: Among a set of solutions

P, the non-dominated set of solutions P′ are those

that are not dominated by any member of the set P.

3 Heuristic Approach for

Multi-Objective Optimization

Problems

In the last years, several algorithms based on

evolutionary mechanisms have been proposed to

find approximations to the Pareto optimal solutions.

As reported in the literature, the first multi-objective

evolutionary algorithm (MOEA) was the VEGA -

Vector Evaluated Genetic Algorithm [11], ever after

countless efforts have been dispensed in the devel-

opment of new evolutionary algorithms. The exist-

ing MOEAs are classified in two groups according

to their characteristics and efficiency [1, 12]. On

one hand there is a first group known as the first-

generation, which includes all the early MOEAs:

VEGA [11], NPGA [13], NSGA [14]. On the other

hand, there is a second group named the second-

generation MOEAs, which comprises very effi-

cient optimizers like SPEA [12] and NSGA II [15],

among others. Basically, the main features that dis-

tinguish the second-generation MOEAs from the

first-generation group is the mechanism of adapta-

tion assignment in terms of dominance and the in-

corporation of elitism [15].

4 Differential Evolution — A Re-

view

Differential Evolution is a structural algorithm

proposed initially by Storn and Price [4] for single-

objective optimization problems. According to the

authors, DE has as main advantages: simple struc-

ture, easiness of use, speed, and robustness. Basi-

cally, the idea of DE is to adapt the search during

the evolutionary process generating trial parameter

vectors by adding the weighted difference between

two population vectors to a third vector. The control
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parameters in DE are the following: N, the popula-

tion size, CR, the crossover constant, and, F , the

weight applied to random differential (perturbation

rate).

DE has been successfully applied in various

fields such as digital filter design [17], parame-

ter estimation in fed-batch fermentation process

[18], engineering system design applied in a multi-

objective context [19], apparent thermal diffusiv-

ity estimation of fruits during drying [20], estima-

tion of drying parameters in rotary dryers [21], ap-

parent thermal diffusivity estimation of the drying

of fruits [22], Gibbs free energy minimization in a

real system [23], estimation of space-dependent sin-

gle scattering albedo in radiative transfer problems

[24, 25, 26], and other applications [16].

5 Multi-Objective Algorithms

based on Differential Evolution

Recently, several attempts to extend the DE to

solve multi-objective problems have been proposed.

The most representative of them is the so-called

PDE - Pareto Differential Evolution [27], where

only one (main) population is used. The repro-

duction mechanism is undertaken only among non-

dominated solutions, and offspring are placed into

the population if they dominate the main parent. In

this case, a metric associated to the distance be-

tween two points in the Pareto front is used to main-

tain diversity. Other alternatives are the following:

PDEA - Pareto Differential Evolution Algorithm

[5], which combines DE with key elements from

the NSGA II [15] such as its non-dominated sorting

and ranking selection procedure; MODE - Multi-

objective Differential Evolution [6], which uses a

variant of the original DE so that the best individual

is adopted to create the offspring. Also, these au-

thors adopt Pareto ranking and crowding distance in

order to produce and maintain well-distributed so-

lutions; VEDE - Vector Evaluated Differential Evo-

lution [28], which is a parallel, multi-population DE

approach as based on the Vector Evaluated Genetic

Algorithm (VEGA) [11]; NSDE - Non-dominated

Sorting Differential Evolution [29] that consists in a

simple modification in the NSGA II [15], where the

real-coded crossover and mutation operators of the

NSGA II are replaced by the DE scheme; DEMO

- Differential Evolution Multi-objective Optimiza-

tion [30], which combines the advantages of DE

with the mechanisms of Pareto-based ranking and

crowding distances sorting.

6 Multi-Objective Differential

Evolution

In this section, we introduce the MODE pro-

gram (Multi-objective Optimization Differential

Evolution), which differs of the algorithms pre-

sented previously by the incorporation of two op-

erators to the original algorithm, namely the mech-

anisms of rank ordering [1, 15] and exploration

of the neighborhood potential solution candidates

[31]. The general structure of the proposed algo-

rithm for MOOP using DE is briefly described in

the following. An initial population of size N is

randomly generated. All dominated solutions are

removed from the population through the operator

Fast Non-Dominated Sorting [1]. In this way, the

population is sorted into non-dominated fronts Fj

(sets of vectors that are non-dominated with respect

to each other). This procedure is repeated until each

vector is member of a front. Three parents are se-

lected at random in the population. A child is gen-

erated from the three parents (this process continues

until N children are generated). Starting from pop-

ulation P1 of size 2N, neighbors are generated to

each one of the individuals of the population in the

following way [31]:

χ(x) = [x−Dk(g)/2,x+Dk(g)/2] (5)

where

Dk(g) =
k

R
[U−L] (6)

Dk(g) is a vector in R
n and a function of the gen-

eration counter g. R is the number of pseudo fronts

defined by the user and the initial maximum neigh-

borhood size in a population is Dk(0)=[U-L], where

L and U represent the lower and upper bounds of the

variables. The pre-defined number of individuals in

each pseudo front is given by [31]:

nk = rnk−1 k = 2, ...,R (7)

where nk is the number of individuals in the k-th

front and r (< 1) is the reduction rate. For a given

population with N individuals, nk can be calculated

as:

nk = N
1− r

1− rR
rk−1 (8)
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According to Hu et al. [31], if r < 1, the number

of individuals in the first pseudo front is the highest

and each pseudo front has an exponentially reduc-

ing number of solutions, this emphasizing a local

search. On the contrary, a greater value for r results

in more solutions in the last pseudo front and hence

emphasizes the global search.

In this way, the neighbors generated are classi-

fied according to the dominance criterion and only

the non-dominated neighbors (P2) will be put to-

gether with P1 to form P3. The population P3 is

then classified according to the dominance crite-

rion. If the number of individuals of the population

P3 is larger than a number defined by the user, it is

truncated according to the criterion of the Crowd-

ing Distance [1]. The crowding distance describes

the density of solutions surrounding a vector. To

compute the crowding distance for a set of pop-

ulation members the vectors are sorted according

to their objective function values for each objective

function. To the vectors with the smallest or largest

values an infinite crowding distance (or an arbitrar-

ily large number for practical purposes) is assigned.

For all other vectors the crowding distance is calcu-

lated according to:

distxi
=

m−1

∑
j=0

f j,i+1− f j,i−1

| f j,max− f j,min|
(9)

where f j corresponds to the j-th objective function

and m equals the number of objective functions.

7 Results and Discussions

To test the performance of the proposed al-

gorithm, a number of benchmark problems de-

signed to represent different families of difficul-

ties to multi-objective evolutionary algorithms - the

ZTD functions [32] - will be solved:

ZDT =

{

min f1(x)
min f2(x)≡ g(x)h( f1(x),g(x))

(10)

where the corresponding g and h functions are given

by:

– ZDT1:

f1(x) = x1 (11)

g(x2, ...,xm) = 1+9
m

∑
i=2

xi

(m−1)
(12)

h( f1(x),g(x)) = 1− ( f1/g)0.5 (13)

– ZDT2

f1(x) = x1 (14)

g(x2, ...,xm) = 1+9
m

∑
i=2

xi

(m−1)
(15)

h( f1(x),g(x)) = 1− ( f1/g)2 (16)

– ZDT3

f1(x) = x1 (17)

g(x2, ...,xm) = 1+9
m

∑
i=2

xi

(m−1)
(18)

h( f1(x),g(x))= 1−( f1/g)0.5−( f1/g)sin(10π f1)
(19)

– ZDT4

f1(x) = 1− exp(−4x1)sin6(6πx1) (20)

g(x2, ...,xm) = 1+9

(

m

∑
i=2

xi

(m−1)

)0.25

(21)

h( f1(x),g(x)) = 1− ( f1/g)2 (22)

Test function ZDT1 has a convex Pareto opti-

mal front, while ZDT2 has the non-convex coun-

terpart of the function ZDT1. Test function ZDT3

represents the discreteness features, whose Pareto

optimal front consists of several disjointed continu-

ous convex parts. Function ZDT4 contains 219 local

Pareto optimal fronts.

For all problems considered, a set of 1000 uni-

formly spaced Pareto optimal solutions are chosen

to compare the convergence (ϒ) and diversity met-

ric (∆) [1], as given by:

ϒ =
∑
|Q|
i=1 di

|Q|
(23)

∆ =
d f +dl +∑

|Q|−1

i=1 |di−d|

d f +dl +(|Q|−1)d)
(24)

where di is Euclidean Distance calculated between

the Q non-dominated solution obtained by the algo-

rithm MODE and the Pareto Optimal solution, d is

the average distance, dl and d f are the distances be-

tween the extreme solutions of the Pareto Optimal.

Parameters used in the ZTD functions: m=30,

generation number (Ngen=100 - both algorithms),

population size (N=100 - NSGA II and N=50 -
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MODE), crossover rate (ρc=0.8 - both algorithms),

mutation rate (pm=0.01 - NSGA II), perturbation

rate (F=0.8 - MODE), pseudo-curve number (R=10

- MODE), reduction rate (r=0.9 - MODE), and the

number of objective functions evaluations (OF) cal-

culated for each algorithm tested.

Figures 1 to 4 shows the computed and exact

global Pareto optimal fronts in the parameter space

as obtained by NSGA II and MODE.

Figure 1. ZDT1 Function.

Figure 2. ZDT2 Function.

Figure 3. ZDT3 Function.

Figure 4. ZDT4 Function.

In these figures above it is possible to observe

that both the algorithms lead to a good approxi-

mation of the Pareto Curve. However, the solu-

tions obtained by MODE were obtained by using a

smaller number of individuals and generations, con-

sequently, a smaller number of objective function

evaluations were performed.

The metrics values after 30 runs for each func-

tion tested are summarized in Table 1.

NSGA II

ϒ σ2(ϒ) ∆ σ2(∆)

ZDT1 0.0338 0.0047 0.3903 0.0018

ZDT2 0.0723 0.0316 0.4307 0.0047

ZDT3 0.1145 0.0079 0.7385 0.0197

ZDT4 0.5130 0.1184 0.7026 0.0646

MODE

ϒ σ2(ϒ) ∆ σ2(∆)

ZDT1 0.0301 0.0014 0.4155 0.0022

ZDT2 0.0614 0.0011 0.4114 0.0055

ZDT3 0.1111 0.0099 0.7477 0.0201

ZDT4 0.5547 0.1478 0.6644 0.0587

Table 1. Average (ϒ, ∆) and variance (σ2) values

obtained by NSGA II and MODE.

In this table, the same performance is observed

for both the algorithms NSGA II and MODE.

Now the influence of incorporating the Neigh-

borhood Exploring Operator (NEO) in MODE will

be analyzed by using the ZDT1 function. Soon af-

ter, the influence of relevant MODE parameters us-

ing the ZDT1, ZDT2 and ZDT3 functions will be

analyzed.
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– Analysis of the Incorporation of the NEO

To this analysis three different algorithms are

considered: MODE, NSGA II and DE (without us-

ing the neighborhood exploring operator). In this

analysis the following parameters were used: F=0.6

(MODE and DE), R=3 (MODE), r=0.8 (MODE),

ρc=0.58 (both algorithms) and pm=0.01 (NSGA II).

Figures 5 to 8 show the metrics of convergence

and diversity by considering the effects of popula-

tion size and generation number, respectively.

Figure 5. Convergence metric (200 generations).

Figure 6. Diversity metric (200 generations).

Figure 7. Convergence metric (100 individuals).

Figure 8. Diversity metric (100 individuals).

In the figures above it is interesting to observe

that by increasing the population size or the gen-

eration number do not necessarily imply better re-

sults for the metric. The incorporation of a refine-

ment strategy for neighborhood exploration leads to

better results as compared with those obtained by

NSGA II and by DE, thus justifying the use of this

operator.

– Analysis of relevant parameters - MODE

X Perturbation Rate

For this analysis the following parameters were

used: Ngen=150, N=50, ρc=0.8, R=10 and r=0.9.

Figure 9. Convergence metric - influence of the

perturbation rate (F).

In general, the results obtained are satisfactory

as compared with NSGA II (convergence metric

equal to 8×10−4 and diversity equal to 0.46; [1]).

For each one of the ZDT functions different values

were obtained for F (leading to good metric values).

For example, 1.4 and 1.6 are good values for both

the convergence and diversity metrics as far as the

ZDT1 function is concerned. However, these values

are not the best choice for F when dealing with the

functions ZDT2 and ZDT3. In spite of the variation
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of F , it can be considered that any value between

0.2 and 2 is a good choice for that parameter, ex-

cept for F equal to 0.2 for the case of the diversity

metric.

Figure 10. Diversity metric - influence of the

perturbation rate (F).

X Crossover Rate

In this analysis the following parameters were

used: Ngen=150, N=50, F=0.8, R=10 and r=0.9.

Figure 11. Convergence metric - influence of

crossover rate (ρc).

Figure 12. Diversity metric - influence of

crossover rate (ρc).

Figures 11 and 12 shows that ρc > 0.1 is a

good choice for this parameter. This same result

was obtained by Storn and Price [4] and Storn et al.

[16]; however, their works were dedicated to single-

objective optimization.

X Reduction Rate

In this analysis the following parameters were

used: Ngen=150, N=50, ρc=0.8, R=10 and F=0.8.

Figure 13. Convergence metric - influence of the

reduction rate (r).

Figure 14. Diversity metric - influence of the

reduction rate (r).

As observed in figures 13 and 14, it is not pos-

sible to choose a good value for r that is equally

recommended for all the analyzed problems. Con-

sequently, a final conclusion regarding the influence

of this parameter is not presented.

8 Conclusions

In this paper, a new DE approach is presented

for dealing with multi-objective optimization prob-

lems. This methodology permits the extension of

the algorithm of DE to optimization problems with

multiple objectives, through the incorporation of

two operators to the original algorithm, namely the
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mechanisms of rank ordering and neighborhood po-

tential solution candidates exploring. The proposed

algorithm is applied to various classical problems,

the so-called ZDT functions. Regarding all the ob-

tained comparisons it is possible to observe that the

metrics used for this purpose lead to results that are

at least equivalent to those obtained by NSGA II.

However, it is worth mentioning that a smaller num-

ber of objective function evaluations are necessary

for MODE. The sensitivity analysis showed that de-

spite the increase of the number of objective func-

tion evaluations due to the new operators included

in the MODE algorithm, this disadvantage can be

softened by using either a smaller number of in-

dividuals in the population or a smaller generation

number. Finally, the results show that the proposed

algorithm represents an interesting alternative for

the treatment of multi-objective optimization prob-

lems even in the case of conflicting objectives.
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