PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional Order Fuzzy Backstepping Torque Control of Electrical Load Simulator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Rozmyte sterowanie momentem z ułamkowym krokiem wstecz dla symulatora obciążenia elektrycznego
Języki publikacji
EN
Abstrakty
EN
A novel Fractional order adaptive robust control is proposed for electrical load simulator system (ELS) using fuzzy back stepping method. A fractional order linear sliding surface is constructed and a robust fractional order control law is derived using back stepping method. The control performance of load simulator is affected by extra torque disturbance. Fuzzy logic system is used to estimate extra torque disturbance .A fractional order adaptive law is derived to update fuzzy logic system using Lyapunov theorem. The effectiveness of proposed control scheme is verified using numerical simulations.
PL
W artykule opisano zastosowanie sterowania FOC (ang. Fractional Order Control) do symulacji obciążenia elektrycznego, z wykorzystaniem sterowania rozmytego z krokiem wstecz. Wyznaczono powierzchnię ślizgową rzędu ułamkowego oraz opracowano reguły dla sterowania rzędu ułamkowego. Zastosowana logika rozmyta pozwala na określenie pojawiających się wahań momentu, co zbadano poprzez zadawanie tego rodzaju zmian. Skuteczność proponowanego rozwiązania poddano weryfikacji w badaniach symulacyjnych.
Rocznik
Strony
237--240
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Beihang University Beijing
autor
  • Beihang University, Science and Technology on Aircraft Control Laboratory Beijing
  • UET Peshawar, Campus III, Bannu, Pakistan
Bibliografia
  • [1] Wang Xingjian, Shaoping Wang., High Performance Torque Controller Design for Electric Load Simulator, IEEE conference on industrial electronics and applications( 2011), 2499-2505.
  • [2] Y. Nam, QFT force loop design for the aerodynamic load simulator, IEEE Transactions on Aerospace and Electronic Systems, 37(2001), nr. 4,.
  • [3] Y. Huang, K. Chen, and J. Wei, Robust controller design and experiment for electric load simulator, 3rd International Advanced Computer Theory and Engineering,( 2010),236-240.
  • [4] L. Jianfu and F. Wenxing, Self-learning control of load changes in motor driven load simulator using CMAC, IEEE International Conference on Intelligent Computing and Intelligent Systems, 1(2009), 156-159.
  • [5] Shuxi Liu, Mingyu Wang, Taifu Li,Research on direct torque control based asynchronous dynamometer for dynamic emulation of mechanical loads, Kybernetes, 39(2010), nr. 6, 1018 – 1028.
  • [6] Zhang Guixiang, Chen Hongwei and Zhou Cong, A Novel Estimate Method for the Speed and Mechanical Torque of the AC Asynchronous Electrical Dynamometer, International Journal of circuit system and signal processing , 1( 2010), nr.3, 232-238.
  • [7] Gilbert C. D. Sousa and Denis R. Errera, A high performance dynamometer for drive system testing, International Conference on Industrial Electronics, Control and Instrumentation, 2(1997), 500-504
  • [8] Jonathan Chauvin, Alexandre Chasse, Dynamic periodic predictor for a combustion engine test bench, IEEE Chinese Control and Decision conference, ( 2009), 6608-6613
  • [9] P. Ortner, E. Gruenbacher, L. Del Re, Model Based Nonlinear Predictors for Torque estimation on a Combustion Engine Test Bench, IEEE International Conference on Control Applications, ( 2008), 221-226.
  • [10] S.H.Kim, S.H.Park, and S.I.Han, Precise friction control for the nonlinear friction system using the friction state observer and sliding mode control with recurrent fuzzy neural networks, Mechatronics, 19 (2009), 805–815.
  • [11] B.S.Kim and S.I.Han, Non-linear friction compensation using Backstepping control and robust friction state observer with recurrent fuzzy neural networks, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control engineering, 223(2009), nr.7, 973-988.
  • [12] Jinpeng Yu, Yumei Ma, Bing Chen and Haisheng Yu, Adaptive fuzzy backstepping position tracking control of permanent magnet synchromous motor , 7(2011), nr.4,1589-1601.
  • [13] L.Dongliang and Z. Lixin ,Application of Backstepping control in PMSMS servo system, 9th international conference of electronic measurment and instrument, 3(2009) ,638-641.
  • [14] Kac imi A., Mokhtari A., and Kouadri B,Sliding mode control based on adaptive backstepping for a quadrotor unmanned aerial vehicle, Przegląd Elektrotechniczny, 88 (2012), nr 6, 188-193
  • [15] Tahar M., Zemalache M. K, and Omari A, Control of an Under-Actuated X4-flyer using Integral Backstepping Controller, Przegląd Elektrotechniczny, 87 (2011), nr 10, 251-256.
  • [16] Oustaloup. M, Mreau. A , Nouillant. X, The CRONE suspension, Control Eng Pract, 4(1996), 1101-1108.
  • [17] Delavari. H, Ghaderi. R, Ranjbar. A, Hosseinnia. S, and Momani. S, Adaptive Fractional PID Controller for Robot Manipulator, 4th IFAC Workshop on Fractional Differentiation and its Applications, (2010), 1-7.
  • [18] M. Onder, Fractional order sliding mode control with reaching law, Turk J Elec Eng & Comp Sci, 18(20100, nr. 5, 731-747.
  • [19] Bitao Zhang, and Yougou PI, Design of fractional order sliding mode controller based on parameters tuning, Przegląd Elektrotechniczny, 88 (2012), nr 10a, 172-175.
  • [20] Bitao Zhang, and Yougou PI,Integration of fuzzy and sliding mode control based on fractional calculus theory for permanent magnet synchronous motor, Przegląd Elektrotechniczny, 87 (2011), nr 11, 251-255.
  • [21] Dadras. S and Momeni. H. R, Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty, Communications in Nonlinear Science and Numerical Simulation, 17(2012), nr. 1, 367-377.
  • [22]Yoo. B. K and Ham. W. C, Adaptive Control of Robot Manipulator Using Fuzzy Compensator, IEEE Transactions on Fuzzy Systems, 8(2000), nr. 2,186-199.
  • [23] NasimUllah, Shaoping Wang, and Aslam. J, Adaptive robust control of Electrical Load Simulator based on fuzzy logic compensation, International conference on Fluid Power and Mechatronics, (2011), 861-867.
  • [24] Wenjiang. L, Qingmie. S, Hairong. X and Fengyu. Z, Sliding backstepping control of ship course with nonlinear disturbance observer, Journal of information and computer science, 16(2011),nr.8, 3809-38017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bc5dc90-6db0-4f7a-9664-96938f4c3851
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.