PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Significance of Manufacturing Process Parameters in a Glassworks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the use of artificial neural networks (multilayer perceptrons) to examine the significance of production process parameters. The considered problem relates to the occurrence of production periods with an increased number of defective products. The research aims to determine which of the 69 parameters of the manufacturing process most affect the number of defects. Two ways of expressing the parameters significance were used: using the sensitivity analysis and exploring the weights of connections between neurons. The results were determined using both single neural networks and a set of networks. The outcome from the research is the rankings of significance of the manufacturing process parameters. The analyzed data were obtained from a glassworks producing glass packaging.
Rocznik
Strony
39--45
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Department of Computer Science, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] A. RODZIEWICZ, M. PERZYK: Application of significance analysis to finding root causes of product defects in continuous casting of steel. Comput. Methods Mater. Sci., 16(2016)4, 187-195.
  • [2] M. PERZYK, A.W. KOCHAŃSKI: Prediction of ductile cast iron quality by artificial neural networks. J. Mater. Process. Tech., 109(2001), 305-307.
  • [3] A. DHOND, A. GUPTA, S. VADHAVKAR: Data mining techniques for optimizing inventories for electronic commerce. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2000, 480-486.
  • [4] D.S. CHANG, S.-T. JIANG: Assessing quality performance based on the on-line sensor measurements using neural networks. Comput. Ind. Eng., 42(2002)2, 417-424.
  • [5] Y.-H. TSAI, J.C. CHEN, S.-J. LOU: An in-process surface recognition system based on neural networks in end milling cutting operations. Int. J. Mach. Tools Manuf., 39(1999)4, 583-605.
  • [6] E. Brinksmeier, et al.: Modelling and optimization of grinding processes. Journal of Intelligent Manufacturing, 9(1998)4, 303-314.
  • [7] R. Teti, S.R.T. Kumara: Intelligent computing methods for manufacturing systems. CIRP Annals, 46(1997)2, 629-652.
  • [8] T. Erzurumlu, H. Oktem: Comparison of response surface model with neural network in determining the surface quality of moulded parts. Mater. Des., 28(2007)2, 459-465.
  • [9] G. Köksal, İ. Batmaz, M.C. Testik: A review of data mining applications for quality improvement in manufacturing industry. Expert Syst. Appl., 38(2011)10, 13448-13467.
  • [10] Ł. Paśko, P. Litwin: Methods of data mining for quality assurance in glassworks. Collaborative networks and digital transformation – Proceedings of 20th Working Conference of Virtual Enterprises – PRO-VE, Turin, 2019, 185-192.
  • [11] G. Setlak, L. Pasko: Random forests in a glassworks: knowledge discovery from industrial data. Information Systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology – ISAT, Wrocław, 2019, 179-188.
  • [12] M. Perzyk, et al.: Comparison of data mining tools for significance analysis of process parameters in applications to process fault diagnosis. Information Sciences, 259(2014), 380-392.
  • [13] M. Perzyk, J. Kozłowski, K. Zarzycki: Application of computational intelligence methods in control and diagnosis of production processes. Syst. Support. Prod. Eng., 3(2013), 104-125.
  • [14] L. Breiman, et al.: Classification and regression trees. Taylor & Francis, 1984.
  • [15] L. Breiman: Random forests. Machine Learning, 45(2001)1, 5-32.
  • [16] J. Wang, et al.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst., 48(2018), 144-156.
  • [17] T.L. Tseng, et al.: Applying data mining approaches for defect diagnosis in manufacturing industry. IIE Annual Conference and Exhibition, Houston, 2004, 1441-1447.
  • [18] J. Hur, H. Lee, J.-G. Baek: An intelligent manufacturing process diagnosis system using hybrid data mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining – Proceeding of the Industrial Conference on Data Mining, 2006, 561-575.
  • [19] M. Perzyk, R. Biernacki, J. Kozlowski: Data mining in manufacturing: significance analysis of process parameters. Proc. Inst. Mech. Eng., B J. Eng. Manuf., 222(2008)11, 1503-1516.
  • [20] A. Saltelli, et al.: Global sensitivity analysis: the primer. John Wiley & Sons, 2008.
  • [21] R. Tadeusiewicz: Sieci neuronowe. Akademicka Oficyna Wydawnicza RM, Warszawa, 1993.
  • [22] M. Piliński, D. Rutkowska, L. Rutkowski: Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. PWN, Warszawa, 1997.
  • [23] S. Osowski: Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2006.
  • [24] P. Cichosz: Systemy uczące się. WNT, Warszawa, 2009.
  • [25] J. Żurada, M. Barski, W. Jędruch: Sztuczne sieci neuronowe: podstawy teorii i zastosowania. PWN, Warszawa, 1996.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bc028ac-bb73-40e2-b925-a6960c27950e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.