Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Underwater wireless optical communication (UWOC) is a promising solution for high-speed data transfer in marine environments. However, underwater turbulence and scattering significantly degrade signal integrity. The objective of this study is to enhance the reliability and efficiency of underwater communication systems by improving signal decoding accuracy in the presence of distortion. In this paper, a novel approach to source data encoding and beam generation in underwater optical communication using Laguerre-Gaussian (LG) modes is proposed. Initially, the conversion of source data into digital code is followed by mode matching, which encodes data into specific phase modes. A Bessel-Gaussian laser beam is generated to carry the encoded information, which is then transformed into LG beams using a spatial light modulator (SLM). These beams, characterised by their orbital angular momentum (OAM) properties, propagate through various underwater environments, including pure seawater, coastal seawater, and turbid water, which introduce different levels of distortion. Distorted LG beams are captured by an underwater camera and processed by a computer. A deep learning model, Res-GoogleNet, is employed to accurately recognize the mode and decode the distorted OAM patterns. Finally, the decoded mode information is used to reconstruct the original data, ensuring efficient and reliable underwater communication. The efficacy of the proposed technique is assessed using Matlab-2019b, the underwater optical communication system is discovered on a Windows OS using 16 GB of RAM and an Intel Core i7 CPU. The proposed model improves accuracy, evaluation metrics of accuracy, precision, recall, signal-to-noise ratio (SNR) and bit error rate (BER). The proposed model achieves a high accuracy rate of 99.07%, surpassing the efficiency of existing approaches. The proposed model improves its accuracy by 5.47%, 1.80%, 0.62%, and 2.97% compared to a diffractive deep neural network (DDNN), a multichannel neural network (MCNN), and a deep convolutional neural network radio frequency (DCNN-RF), respectively.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e154749
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., tab.
Twórcy
autor
- Department of Electronics and Communication Engineering, Mar Ephraem College of Engineering and Technology, Marthandam, Tamil Nadu 629171, India
autor
- Department of Electronics and Communication Engineering, University College of Engineering, Nagercoil, Tamil Nadu 629004, India
Bibliografia
- [1] Selvakumar, S., Ahilan, A., Ben Sujitha, B. & Muthukumaran, N. Crystals kyber cryptographic algorithm for efficient IoT D2d communication. Wirel. Networks 31, 1053-1070 (2024). https://doi.org/10.1007/s11276-024-03790-6.
- [2] Li, Y. & Chitnis, D. Implementation and evaluation of SiPM-based photon counting receiver for IoT applications. IEEE Internet Things J. 11, 20287-20299 (2024). https://doi.org/10.1109/JIOT.2024.3373448.
- [3] Kadam, S., Joseph, C., Kulkarni, K. J. & Raj, A. B. Lightwave modulation in free-space optical communication A Review. Int. J. Eng. Res. Rev. 12, 54-89 (2024). https://doi.org/10.5281/zenodo.13847926.
- [4] Anisha, M. & Adlin Beenu, V. Double secure cloud medical data using euclidean distance-based Okamoto Uchiyama homomorphic encryption. Int. J. Syst. Design Comput. 02, 1-7 (2024).
- [5] Mokhun, I., Galushko, Y., Viktorovskaya, Y., Karabchyivskyi, M. & Bekshaev, A. Transformations of the transverse Poynting vector distribution upon diffraction of a circularly polarized paraxial beam. J. Opt. Soc. Am. A 41, 382-391 (2024). https://doi.org/10.1364/JOSAA.514186.
- [6] Hua, M. F., Liu, S. F., Zhou, L., Bunzli, J. C. & Wu, M. M. Phosphor-converted light-emitting diodes in the marine environment: current status and future trends. Chem. Sci. 16, 2089-2104 (2025). https://doi.org/10.1039/d4sc06605g.
- [7] Kanthavel, R., Dhaya, R. & Ahilan, A. AI-based efficient WUGS network channel modeling and clustered cooperative communication. ACM Trans. Sens. Netw. 18, 1-14 (2022). https://doi.org/10.1145/3469034.
- [8] Ingle, R. et al. SERAV Deep-MAD: deep learning-based security–reliability–availability aware multiple D2D environment. IETE J. Res. 71, 523-536 (2024). https://doi.org/10.1080/03772063.2024.2415502.
- [9] Qu, Z. & Lai, M. A review on electromagnetic, acoustic and new emerging technologies for submarine communication. IEEE Access 12, 12110-12125 (2024). https://doi.org/10.1109/ACCESS.2024.3353623.
- [10] Chow, C.-W. Recent advances and future perspectives in optical wireless communication, free space optical communication and sensing for 6G. J. Light. Technol. 42, 3972-3980 (2024). https://doi.org/10.1109/JLT.2024.3386630.
- [11] Prabhu, M., Muthu Kumar, B. & Ahilan, A. Slime mould algorithm based fuzzy linear CFO estimation in wireless sensor networks. IETE J. Res. 70, 3407-3417. (2024). https://doi.org/10.1080/03772063.2023.2194279.
- [12] Patle, N., Raj, A. B., Joseph, C. & Sharma, N. Review of fibreless optical communication technology: History, evolution, and emerging trends. J. Opt. Commun. 45, 679-702 (2024). https://doi.org/10.1515/joc-2021-0190.
- [13] Domingos, F. P. F., Lotfi, A., Ihianle, I. K., Kaiwartya, O. & Machado, P. Underwater communication systems and their impact on aquatic life - A survey. Electronics 14, 7 (2024). https://doi.org/10.3390/electronics14010007.
- [14] Dong, X. et al. Towards 250-m gigabits-per-second underwater wireless optical communication using a low-complexity ANN equalizer. Opt. Express 33, 2321-2337 (2025). https://doi.org/10.1364/oe.549337.
- [15] Malathy, E. M. et al. 5G network with hexagonal SDN control for highly secure multimedia communication. IETE J. Res. 70, 8492-8507 (2024). https://doi.org/10.1080/03772063.2024.2394598.
- [16] Wang, X., Zhang, M., Zhou, H. & Ren, X. Performance analysis and design considerations of the shallow underwater optical wireless communication system with solar noises utilizing a photon tracing-based simulation platform. Electronics 10, 632 (2021). https://doi.org/10.3390/electronics10050632.
- [17] Zhan, H. et al. Diffractive deep neural network based adaptive optics scheme for vortex beam in oceanic turbulence. Opt. Express 30, 23305-23317 (2022). https://doi.org/10.1364/oe.462241.
- [18] Li, X., Xuan, H., Huang, C. & Li, Y. Orbital angular momentum mode recognition under ocean turbulence channel by DCNN-RF model based on Adma optimization. Results Phys. 63, 107875 (2024). https://doi.org/10.1016/j.rinp.2024.107875.
- [19] Wang, M., Zhang, D., Liang, W. & Guo, W. Deep learning-based general beam synthesis for atmospheric propagation. Opt. Express 32, 29159-29173 (2024). https://doi.org/10.1364/oe.530561.
- [20] Bai, C., Zhang, S., Wang, X., Wen, J. & Li, C. A multichannel-based deep learning framework for ocean SAR scene classification. Appl. Sci. 14, 1489 (2024). https://doi.org/10.3390/app14041489.
- [21] Peng, Y., Chen, B., Wang, L. & Zhao, S. Diffraction deep neural network-based classification for vector vortex beams. Chinese Phys. B 33, 034205 (2024). https://doi.org/10.1088/1674-1056/ad0142.
- [22] Yang, C. et al. A robust time-frequency synchronization method for underwater acoustic OFDM communication systems. IEEE Access 12, 21908-21920 (2024). https://doi.org/10.1109/access.2024.3361845.
- [23] Mohamed, A. G. et al. Chaos fractal digital image encryption transmission in underwater optical wireless communication system. IEEE Access 12, 117541-117559 (2024). https://doi.org/10.1109/access.2024.3446836.
- [24] Xing, S., Wei, B., Yu, Y. & Gong, X. A novel embedded side information transmission scheme based on polar code for peak-to-average power ratio reduction in underwater acoustic OFDM communication system. Sensors 24, 7200 (2024). https://doi.org/10.3390/s24227200.
- [25] Alraie, H., Alahmad, R. & Ishii, K. Double the data rate in underwater acoustic communication using OFDM based on subcarrier power modulation. J. Mar. Sci. Technol. 29, 457-470 (2024). https://doi.org/10.1007/s00773-024-00989-2.
- [26] Mokhun, I., Galushko, Y., Viktorovskaya, Y., Karabchyivskiy, M. & Bekshaev, A. Transformations of the transverse Poynting vector distribution upon diffraction of a circularly polarized paraxial beam. J. Opt. Soc. Am. A 41, 382-391 (2024).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bbbc24d-c539-4851-8663-17a4525172dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.