PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Comparative Study about Production of Vanadium Carbide via Self Propagating High Temperature Synthesis and Reduction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vanadium carbide is important for industrial applications because of its high hardness, high temperature resistance, high chemical, and thermal stability. It is generally obtained from the reaction between V and C powders at a high temperature ranging from 1100 to 1500°C. Investigations on these high strength, high abrasion resistant, hard materials have been intensified in recent years and consequently, significant improvements have been achieved. In this study, VC alloys are produced with low cost processes, by reducing the oxides of their components by SHS methods and ball mill-assisted carbothermal reduction. In the experimental stage, V2O5 was used as oxidized Vanadium source, Cblack as carbon source, magnesium and Cblack as reductant. In the study, VC powders were synthesized by two different methods and optimum production conditions were determined. Furthermore, the effect of different stoichiometric charge components and the effect of experiment durations were realized by X-ray diffraction, HSC Chemistry, and SEM analyses for different reductants.
Słowa kluczowe
Twórcy
  • Yalova University, Faculty of Engineering, Chemical Engineering Department, 77200, Yalova, Turkey
  • Istanbul Medipol University, Vocational School, Construction Technology Department, 34810, Istanbul, Turkey
autor
  • Sinop University, Faculty of Engineering and Architecture, Metallurgical and Materials Engineering Department, 57000, Sinop, Turkey
autor
  • Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, 35390, Izmir, Turkey
autor
  • Yeditepe University, Engineering Faculty, Materials Science and Nanotechnology Engineering Department, 34755, Istanbul, Turkey
autor
  • Yeditepe University, Engineering Faculty, Materials Science and Nanotechnology Engineering Department, 34755, Istanbul, Turkey
Bibliografia
  • [1] Transition Metal Definition, Properties, Elements, & Facts | Britannica, (n.d.).
  • [2] X.S. Fan, Z.G. Yang, C. Zhang, Y.D. Zhang, H.Q. Che, Surf. Coatings Technol. 205 641-646 (2010).
  • [3] Y. Chen, H. Zhang, H. Ye, J. Ma, Int. J. Refract. Met. Hard Mater. 29, 528-531 (2011).
  • [4] M. Mahajan, K. Singh, O.P. Pandey, Adv. Mater. Res. 585, 95-99 (2012).
  • [5] A.S. Kurlov, A.I. Gusev, Inorg. Mater. 49, 347-354 (2013).
  • [6] M. Hossein-Zadeh, M. Razavi, M. Safa, A. Abdollahi, O. Mirzaee, J. King Saud Univ. - Eng. Sci. 28, 207-212 (2016).
  • [7] D.L. Perry, Handbook of Inorganic Compounds, CRC Press, (2016).
  • [8] L. Wu, T. Yao, Y. Wang, J. Zhang, F. Xiao, B. Liao, J. Alloys Compd. 548, 60-64 (2013).
  • [9] C. Guillard, M. Lacroix, M. Vrinat, M. Breysse, B. Mocaer, J. Grimblot, T. Des Courieres, D. Faure, Catal. Today 7, 587-600 (1990).
  • [10] P. Rodrı́guez, J.L. Brito, A. Albornoz, M. Labadı́, C. Pfaff, S. Marrero, D. Moronta, P. Betancourt, Catal. Commun. 5, 79-82 (2004).
  • [11] M. Magarelli, C.E. Scott, D. Moronta, P. Betancourt, Catal. Today. 78, 339-344 (2003).
  • [12] S. Çevik, Afyon Kocatepe Univ. J. Sci. Eng. 14, 9-18 (2014).
  • [13] N.G. Hashe, J.H. Neethling, H.-O. Andrén, S. Norgren, P.R. Berndt, Int. J. Refract. Met. Hard Mater. 26, 404-410 (2008).
  • [14] C.L. Yeh, Y.D. Chen, Ceram. Int. 33, 365-371 (2007).
  • [15] S. Zajac, S. Zajac, The Role of Vanadium in Microalloyed Steels, (2018).
  • [16] E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, D.V. Shtansky, Int. Mater. Rev. 62, 203-239 (2017).
  • [17] M. Bugdayci, M. Alkan, A. Turan, O. Yücel, High Temp. Mater. Process. 37, 889-898 (2018).
  • [18] M. Bugdayci, G. Deniz, C. Ziyreker, A. Turan, L. Oncel, Eng. Sci. Technol. An Int. J. 23, 1259-1265(2020).
  • [19] P.S. Liu, G.F. Chen, Making Porous Metals, in: Porous Mater., Elsevier, 21-112 (2014).
  • [20] B. Akkas, M. Alkan, B. Derin, Y. Onüralp, Adv. Sci. Technol. 63, 251-256 (2010).
  • [21] L. Öncel, Sinop Üniversitesi Fen Bilim. Derg. 64-76 (2020).
  • [22] A.W. Weimer, ed., Carbide, Nitride and Boride Materials Synthesis and Processing, Springer Netherlands, Dordrecht, (1997).
  • [23] O. Yücel, F. Cinar, O. Addemir, A. Tekin, High Temp. Mater. Process. 15, 103-110 (1996).
  • [24] D.F. Cadogan, C.J. Howick, Plasticizers. In Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, (2000).
  • [25] Z.I. Zaki, M.H. El-Sadek, H.H. Ali, H. Ahmed, Materials (Basel). 13, 1-11 (2020).
  • [26] D. Davoodi, A.H. Emami, M. Tayebi, S.K. Hosseini, Ceramics International 44 (5), 5411-5419 (2018).
  • [27] M. Jalaly, F.J. Gotor, M.J. Sayagués International Journal of Refractory Metals and Hard Materials 79, 177-184 (2019).
  • [28] Y. Chen, M. Wang, A. Lv, Z. Zhao, J. An, J. Zhang, S. Jiao, Ceramics International, 47 (20), 28203-28209 (2021).
  • [29] M.V. Çakir, Protection of Metals and Physical Chemistry of Surfaces, 1-12 (2022).
  • [30] L. Zhou, C. Zhu, L.Guo, Z. Wei, Materials Research Express 8 (3), 036501 (2021).
Uwagi
The authors thanks to Yalova University 2019/AP/0024 project for their financial support.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bbba9ba-432a-46e9-aa79-b2e231461cd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.