PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantum Chemical Study of Aminonitrocyclopentanes as Possible High Energy Density Materials (HEDMs)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitro and amine groups were introduced into the cyclopentane skeleton, and the heats of formation, detonation performance, bond dissociation energies, and impact sensitivity for these aminonitrocyclopentanes were calculated in detail at the B3LYP/6-311G** level. The results show that all of the derivatives have negative heats of formation, which are influenced by the position of the substituent groups. Their stabilities were estimated and analyzed according to their bond dissociation energies and calculated characteristic H50 values. Most of the compounds were found to have a lower impact sensitivity than HMX. Furthermore, the detonation velocities and detonation pressures were predicted via the Kamlet-Jacobs equation. Of all these aminonitrocyclopentanes, E has the best detonation properties (ρ = 2.05 g/cm3, D = 9.11 m/s, P = 39.62 GPa) and can be considered as a candidate high energy density material.
Rocznik
Strony
467--480
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • School of Chemistry and Material Science, Shanxi Normal University, 041004 Linfen, P.R.China
autor
  • Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081, P.R.China
autor
  • School of Chemistry and Material Science, Shanxi Normal University, 041004 Linfen, P.R.China
autor
  • School of Chemistry and Material Science, Shanxi Normal University, 041004 Linfen, P.R.China
autor
  • School of Chemistry and Material Science, Shanxi Normal University, 041004 Linfen, P.R.China
autor
  • School of Chemistry and Material Science, Shanxi Normal University, 041004 Linfen, P.R.China
autor
  • School of Chemistry and Material Science, Shanxi Normal University, 041004 Linfen, P.R.China
autor
  • School of Chemistry and Material Science, Shanxi Normal University, 041004 Linfen, P.R.China
Bibliografia
  • [1] Singh R.P., Verma R.D., Meshri D.T., Shreeve Jn.M., Energetic Nitrogen-Rich Salts and Ionic Liquids, Angew. Chem. Int. Ed., 2006, 45, 3584-3601.
  • [2] Fendt T., Fischer N., Klapötke T.M., Stierstorfer J., N-Rich Salts of 2-Methyl-5- nitraminotetrazole: Secondary Explosives with Low Sensitivities, Inorg. Chem., 2011, 50,1447-1458.
  • [3] Li Y.C., Qi C., Li S.H., Zhang H.J., Sun C.H., Yu Y.Z., Pang S.P., 1,1′-Azobis-1,2,3- triazole: a High-Nitrogen Compound with Stable N8 Structure and Photochromism, J. Am. Chem. Soc., 2010, 132, 12172-12173.
  • [4] Chi W.J., Li L.L., Li B.T., Wu H.S., Density Functional Calculations for a High Energy Density Compound of Formula C6H6−n(NO2)n, J. Mol. Model, 2012, 18, 3695-3704.
  • [5] Murray J.S., Concha M., Seminario J.M., Politzer P., Computational Study of Relative Bond Strengths and Stabilities of a Series of Amine and Nitro Derivatives of Triprismane and some Azatriprismanes, J. Phys. Chem., 1991, 95, 1601-1605.
  • [6] Chung G., Schmidt M.W., Gordon M.S., An Ab Initio Study of Potential Energy Surfaces for N8 Isomers, J. Phys. Chem. A, 2000, 104, 5647-5650.
  • [7] Yan Q.L., Zeman S., Theoretical Evaluation of Sensitivity and Thermal Stability for High Explosives Based on Quantum Chemistry Methods: a Brief Review, Int. J. Quantum Chem., 2012, 113, 1049-1061.
  • [8] Yan Q.L., Zeman S., Svoboda R., Elbeih A., Thermodynamic Properties, Decomposition Kinetics and Reaction Models of BCHMX and Its Formex Bonded Explosive, Thermochim. Acta, 2012, 547, 150-160.
  • [9] Maranda A., Paszula J., Zawadzka-Malota I., Kuczynska B., Witkowski W., Nikolczuk K., Wilk Z., Aluminum Powder Influence on ANFO Detonation Parameters, Cent. Eur. J. Energ. Mater., 2011, 8, 279.
  • [10] Levchik S.V., Balabanovich A.I., Ivashkevich O.A., Lesnikovich A.I., Gaponik P.N., Costa L., The Thermal Decomposition of Aminotetrazoles. Part 2. 1-Methyl-5- aminotetrazole and 1,5-Diaminotetrazole, Thermochim Acta, 1993, 225, 53-65.
  • [11] Chavez D.E., Hiskey M.A., Gilardi R.D., 3,3′-Azobis(6-amino-1,2,4,5-tetrazine): A Novel High-Nitrogen Energetic Material, Angew. Chem. Int. Ed., 2000, 39, 1791-1793.
  • [12] Huynh M.H.V., Hiskey M.A., Pollard C.J., Montoya D.P., Hartline E.L., Gilardi R., 4,4′,6,6′-Tetra-Substituted Hydrazo- and Azo-1,3,5-Triazines, J. Energ. Mater., 2004, 22, 217-229.
  • [13] Zhang M.X., Eaton P.E., Gilardi R., Hepta- and Octanitrocubanes, Angew. Chem. Int. Ed., 2000, 39, 401-404.
  • [14] Puchala A., Belaj F., Kappe C.O., Bergman J., On the Reaction of 3,4-Dihydropyrimidones with Nitric Acid. Preparation and X-Ray Structure Analysis of a Stable Nitrolic Acid, J. Heterocycl. Chem., 2001, 38, 1345-1352.
  • [15] Zeng Z., Gao H., Twamley B., Shreeve Jn.M., Energetic Mono and Dibasic 5-Dinitromethyltetrazolates: Synthesis, Properties, and Particle Processing, J. Mater. Chem., 2007, 17, 3819-3826.
  • [16] Wang R., Xu H., Guo Y., Sa R., Shreeve Jn.M., Bis[3-(5-nitroimino-1,2,4- triazolate)]-based Energetic Salts: Synthesis and Promising Properties of a New Family of High-Density Insensitive Materials, J. Am. Chem. Soc., 2010, 132, 11904-11905.
  • [17] Latypov N.V., Bergman J., Langlet A., Wellmar U., Bemm U., Synthesis and Reactions of 1,1-Diamino-2,2-dinitroethylene, Tetrahedron, 1998, 54, 11525- 11536.
  • [18] Ye C., Shreeve Jn.M., New Atom/Group Volume Additivity Method to Compensate for the Impact of Strong Hydrogen Bonding on Densities of Energetic Materials, J. Chem. Eng. Data, 2008, 53, 520-524.
  • [19] Chen P., Chieh Y., Tzeng S., Density Functional Calculations of the Heats of Formation for Various Aromatic Nitro Compounds, J. Mol. Struct.: THEOCHEM, 2003, 634, 215-224.
  • [20] Chi W., Wang X., Li B., Wu H., Theoretical Investigation on the Heats of Formation and Detonation Performance in Polydinitroaminocubanes, J. Mol. Model., 2012, 18, 4217-4223.
  • [21] Kamlet M.J., Jacobs S.J., Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [22] Politzer P., Martinez J., Murray J.S., Concha M.C., Toro-Labbé A., An Electrostatic Interaction Correction for Improved Crystal Density Prediction, Mol. Phys., 2009, 107, 2095-2101.
  • [23] Bulat F.A., Toro-Labbé A., Brinck T., Murray J.S., Politzer P., Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies, J. Mol. Model., 2010, 16, 1679-1691.
  • [24] Cao C., Gao S., Two Dominant Factors Influencing the Impact Sensitivities of Nitrobenzenes and Saturated Nitro Compounds, J. Phys. Chem. B, 2007, 111, 12399-12402.
  • [25] Pospíšil M., Vávra P., Concha M., Murray J., Politzer P., A Possible Crystal Volume Factor in the Impact Sensitivities of some Energetic Compounds, J. Mol. Model., 2010, 16, 895-901.
  • [26] Wei T., Zhu W., Zhang J., Xiao H., DFT Study on Energetic Tetrazolo-[1,5-b]- 1,2,4,5-tetrazine and 1,2,4-Triazolo-[4,3-b]-1,2,4,5-tetrazine Derivatives, J. Hazard. Mater., 2010, 179, 581-590.
  • [27] Politzer P., Ma Y., Lane P., Concha M.C., Computational Prediction of Standard Gas, Liquid, and Solid-phase Heats of Formation and Heats of Vaporization and Sublimation, Int. J. Quantum Chem., 2005, 105, 341-347.
  • [28] Politzer P., Murray J.S., Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds, Cent. Eur. J. Energ. Mater., 2011, 8, 209.
  • [29] Owens F.J., Calculation of Energy Barriers for Bond Rupture in Some Energetic Molecules, J. Mol. Struct.: THEOCHEM, 1996, 370, 11-16.
  • [30] Chi W., Sun G., Liu T., Li B., Wu H., Density Functional Theory Calculations on the Thermodynamic Properties of Polynitrosoprismanes, J. Mol. Model., 2012, 18, 4557-4563.
  • [31] Politzer P., Abrahmsen L., Sjoberg P., Effects of Amino and Nitro Substituents upon the Electrostatic Potential of an Aromatic Ring, J. Am. Chem. Soc., 1984, 106, 855-860.
  • [32] Fried L.E., Ruggiero A.J., Energy Transfer Rates in Primary, Secondary, and Insensitive Explosives, J. Phys. Chem., 1994, 98, 9786-9791.
  • [33] Murray J.S., Lane P., Politzer P., Bolduc P.R., A Relationship between Impact Sensitivity and the Electrostatic Potentials at the Midpoints of C-NO2 Bonds In Nitroaromatics, Chem. Phys. Lett., 1990, 168, 135-139.
  • [34] Politzer P., Murray J.S., Relationships between Dissociation Energies and Electrostatic Potentials of C-NO2 Bonds: Applications to Impact Sensitivities, J. Mol. Struct., 1996, 376, 419-424.
  • [35] Pospíšil M., Vávra P., Concha M.C., Murray J.S., Politzer P., A Possible Crystal Volume Factor in the Impact Sensitivities of some Energetic Compounds, J. Mol. Model., 2010, 16, 895-901.
  • [36] Pospíšil M., Vávra P., Concha M.C., Murray J.S., Politzer P., Sensitivity and the Available Free Space per Molecule in the Unit Cell, J. Mol. Model., 2011, 17, 2569-2574.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bb4f9c0-6a9c-4686-bbd5-f8663a4cf85a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.