Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Regions contaminated with heavy metals throughout the world are increasing from year to year, which gives rise to the need of seeking new methods enabling their reclamation. Applied and effective techniques include aided phytostabilization. The executed studies aimed to determine the potential for applying Autoclaved Aerated Concrete (AAC) in the process of aided phytostabilization of soil contaminated with heavy metals, using Lolium perenne L. as the test plant. Soil heavily contaminated with heavy metals was derived from a metal waste landfill. Upon completion of the experiment, the contents of heavy metals in the soil, roots and above-ground parts of Lolium perenne L. were identified using flame atomic absorption spectrometry. The results of the experiment revealed a decrease in concentrations of Cd (27%), Cu (23%) and Zn (19%) in the analyzed soil, along with an increase in the pH value (1.35 units) of the soil and plant yield of Lolium perenne L. upon application of AAC as compared to the control series. It is also worth mentioning that the concentrations of Pb, Cd, Cu, Zn, Cr and Ni in the roots were higher than in the above-ground parts of Lolium perenne L. To sum up, the application of AAC to soil contaminated with heavy metals may be potentially beneficial and successfully applied in the technique of aided phytostabilization.
Wydawca
Rocznik
Tom
Strony
101--112
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Warsaw University of Life Sciences, Institute of Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Life Sciences, Institute of Environmental Engineering, Warsaw, Poland
Bibliografia
- [1] Bosak, V., Sachyuka, T., Akulich, M., (2019). Application of Saponite-Containing Basaltic Tuffs to improve the cultivation of Vegetable Crops. In: Proceedings of the Jahrestagung der DBG/BGS Erd-Reich und Boden-Landschaften. Bern, Switzerland, no. 5, pp. 24–27. https://eprints.dbges.de/id/eprint/1800
- [2] Castaldi, P., Silvetti, M., Manzano, R., Brundu, G., Roggero, P.P., Garau, G., (2018). Mutual effect of Phragmites australis, Arundo donax and immobilization agents on arsenic and trace metals phytostabilization in polluted soils. Geoderma, 314, 63–72. https://doi.org/10.1016/j.geoderma.2017.10.040
- [3] Castaldi, P., Santona, L., Cozza, C., Giuliano, V., Abbruzzese, C., Nastro, V., Melis, P., (2005). Thermal and spectroscopic studies of zeolites exchanged with metal cations. Journal of Molecular Structure, 734, 99–105. https://doi.org/10.1016/j.molstruc.2004.09.009
- [4] Directive 2008/98/EC: Waste Management, Circular Economy.
- [5] Garau, G., Castaldi, P., Santona, L., Deiana, P., Melis P., (2007). Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142, 47–57. https://doi.org/10.1016/j.geoderma.2007.07.011
- [6] Główny Urząd Statystyczny, (2023). Recykling odpadów budowlanych w Polsce: 2023. Warsaw: Zakład Wydawnictw Statystycznych.
- [7] Guo, D., Fan, Z., Lu, S., Ma Y., Nie X., Tong, F., Peng, X., (2019). Changes in rhizosphere bacterial communities during remediation of heavy metal accumulating plants around the Xikuangshan mine in southern China. Scientific Reports, 9, 1–11. https://doi.org.10.1038/s41598-018-38360-2
- [8] Ju, H., Jin-Hee, H., (2024). Salt Tolerance of Phragmites australis and Effect of Combing it with Topsoil Filters on Biofiltration of CaCl2 Contaminated Soil. Sustainability, 16, 22. https://doi.org/10.3390/su16198522
- [9] Kabirifar, K., Mojtahedi, M., Wang, C., Tam, V.W.Y., (2020). Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. Journal of Cleaner Production, 23, 263. https://doi.org/10.1016/j.jclepro.2020.121265
- [10] Khanthom, S., Stewart, T. N., Prapagdee, B., (2021). The potential of rhizobial bacteria to remove heavy metals from aqueous solution and to promote plant root elongation under heavy metal toxic conditions. Environmental Technology & Innovation, 22, 10–14. https://doi.org/ 10.1016/j.eti.2021.101419
- [11] Kim, K., Yoon, S., Kwon, H.A., Choi, Y., (2020). Effects of acid-washing and pH-neutralisation treatments on the fertility of heavy metal-contaminated marine sediments as soils for plant cultivation. Environmental. Pollution, 90, 267. https://doi.org/10.1016/j.envpol.2020.115466
- [12] Klik, B., Jachimowicz, P., Liniauskiene, E., Gusiatin, M., Radzevičius, A., Brtnicky, M., Šadzevičius, R., Bęś, A., Mazur, Z., Dapkienė, M., Radziemska, M., (2024). Ash from gasification of poultry feathers for heavy metals immobilization under assisted phytostabilization in soil. Scientific Review Engineering and Environmental Sciences, 33(2). https://doi.org/10.22630/srees.9761
- [13] Klik, B., Brtnicky, M., Jaskulska, I., Gusiatin, M.Z., Jaskulski, D., Holatko, J., Baltazar, T., Liniauskiene, E., Radziemska, M., (2023). Unlocking the Saponite Potential in Aided Phytostabilisation of Multi-Metal-Contaminated Soils. Minerals, 13, 18–20. https://doi.org/10.3390/min13111354
- [14] Liu, W., Xiao, X., Li, L., Shen, X., Cao, Y., Gao, C., Zhao Y., (2025). Biochar-based metal tolerating plant growth promoting bacterial inoculants enhanced the ability of ryegrass for phytostabilization. Environmental Research, 265, 120389. https://doi.org/10.1016/j.envres.2024.120389
- [15] Luo, J., Feng, S., Li, M., He, Y., Deng, Y., Cao, M., (2024). Effect of magnetized water irrigation on Cd subcellular allocation and chemical forms in leaves of Festuca arundinacea during phytoremediation. Ecotoxicology and Environmental Safety, 277, 116376. https://doi.org/10.1016/j.ecoenv.2024.116376
- [16] Nikitin, M.V., Popova, L.F., Nakvasina, E.N., Romanov E.M., Zhuravleva, E.A., (2021). Possibility Determination of Using Saponite in Agriculture. OP Conf. Series: Earth and Environmental Science 202, 723, 022016. https://doi.org/10.1088/1755-1315/723/2/022016
- [17] Oubohssaine, M., Dahmani, I., (2024). Phytoremediation: Harnessing plant power and innovative technologies for effective soil remediation. Plant stress, 14, 10–15. https://doi.org/10.1016/j.stress.2024.100578
- [18] Quin, B.F. and Brooks, R.R., (2020). Tungsten concentrations in plants and soils as a mean 709 of detecting scheelite-bearing ore-bodies in New Zealand. Plant and Soil, 177–188.
- [19] Radziemska, M., Błażejczyk, A., Gusiatin, M.Z., Majewski, G., (2022). Nanoporous zeolite and its effect on the immobilization of trace elements in soils from scrap landfills under aided phytostabilization. Land Degradation and Development, 34, 1–13. https://doi.org/10.1002/ldr.4548
- [20] Radziemska, M., Dziecioł, J., Gusiatin, Z.M., Bes, A., Sas, W., Głuchowski, A., Gawryszewska, B., Mazur, Z., Brtnicky, M., (2021). Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals. Energies, 14(20). https://doi.org/10.3390/en14144300
- [21] Regulation of the Minister of the Environment of 1 September 2016 on soil quality standards and earth quality standards (Dz.U. 2016 item 1395).
- [22] Sas, W., (2018). Charakterystyki geotechniczne wybranych materiałów antropogenicznych. Warsaw: SGGW.
- [23] Scattolin, M., Peuble, S., Pereira, F., Paran, F., Moutte, J., Menad, N., Faure, O., (2021). Aidedphytostabilization of steel slag dumps: The key-role of pH adjustment in decreasing chromium toxicity and improving manganese, phosphorus and zinc phytoavailability. Journal of Hazardous Materials, 405, 124225. https://doi.org/10.1016/j.jhazmat.2020.124225
- [24] Song, Y., Cheng, Q., Zhao, B., (2025). Exogenous organic acids promoted phytoremediation by Hydrangea macrophylla in cadmium – contaminated soil. Ecotoxicology and Environmental Safety, 290, 117551. https://doi.org/10.1016/j.ecoenv.2024.117551
- [25] Tian, X., Qu, G., Xu, R., Liu, X., Jin, C., (2024). Iron-based materials for immobilization of heavy metals in contaminated soils: A critical review. Journal of Environmental Chemical Engineering, 12(5), 113741. https://doi.org/10.1016/j.jece.2024.113741
- [26] Tretyn, A., (1994). Wapń w komórkach eukariotycznych. Warsaw: PWN.
- [27] Eurostat, (2017). Waste statistics: 2017. Luxeburg: European Statistical Office, European Comission.
- [28] Wang, J., Wu, H., Tam, V.W.Y., Zuo, J., (2019). Considering life-cycle environmental impacts and society’s willingness for optimizing construction and demolition waste management fee: An empirical study of China. Journal of Cleaner Production, 1004(206). https://doi.org/10.1016/j.jclepro.2018.09.170
- [29] Wu, J., Hsu, F.C., Cunningham, S.D., (1999). Chelate-assisted Pb phytoextraction, Pb availability, absorption and translocation limitations. Environmental Science & Technology, 1(33). https://doi.org/10.1021/es9809253
- [30] Yan, A., Wang, Y., Tan, S.N., Mohd Y., M.L., Ghosh, S., Chen, Z., (2020). Phytoremediation: Approach to the remediation of land contaminated with heavy metals. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359
- [31] Yang, S., Liu, B., Wang, L., Duran, R., (2025). Dispatched microbial community assembly processes driving ecological succession during phytostabilization of mercury-rich tailings. Environmental Pollution, 365, 125376. https://doi.org/10.1016/j.envpol.2024.125376
- [32] Zhang, Y., Zhan, J., Ma, C., Liu, W., Huang, H., Yu, H., Christie, P., Li, T., Wu, L., (2024). Rootassociated bacterial microbiome shaped by root selective effects benefits phytostabilization by Athyrium wardii (Hook.). Ecotoxicology and Environmental Safety, 269, 115739. https://doi.org/10.1016/j.ecoenv.2023.115739
- [33] Zhang, J., Ding, L., Li, F., Peng, J., (2022). Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China. Journal of Cleaner Production, 255, 132–136. https://doi.org/10.1016/j.jclepro.2020.120223
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bb2fb03-c40b-4967-b811-1e1546e59bbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.