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1. Introduction  

Standby redundancy is a technique widely used to 
improve system reliability and availability. In gen-
eral, there are three types in standby, i.e. cold, hot 
and warm standby. Cold standby implies that the in-
active component has a zero failure rate and cannot 
fail while in standby state. Hot standby implies that 
an inactive component undergoes the same opera-
tional environment as when it is in active state. This 
means that the lifetime of an inactive component is 
stochastically equal to that of the same component in 
active state. Warm standby is an intermediate case 
and an inactive component undergoes milder opera-
tional environment than that of the same component 
in active state. Thus, in this case, the lifetime of an 
inactive component may be stochastically larger than 
that of the same component in active state.  

In practice, warm standby needs to be adopted 
when the state change from cold standby to active 
state is not smooth and continuous. By practical rea-
sons, there could be an interruption during the state 
change, which results in stopping of operation of the 
system. Then this may cause critical and heavy loss 
especially when production systems are considered. 

For a smooth and continuous change of state, the 
standby unit starts its ‘warm’ operation (which 
means the standby unit is under warm standby state) 
from time 0=t  and it starts its ‘hot’ operation as 
soon as the main operating unit fails. Generally, in 
almost of all research on warm standby systems, the 
standby unit starts its warm operation from time 

0=t . However, as standby unit can fail during 
warm standby period, it would be better to keep it in 
cold standby state at time 0=t  and then let it start 
its warm operation after pre-specified time, e.g., 

st =  (in what follows it will be called switching 
time) for optimizing the performance measure of the 
system. In this paper, a warm standby system with 
two units, whose operating rule is defined by a pre-
specified switching time s , will be studied. The state 
diagram for this standby system is presented in Fig-
ure 1. 

In most of the research on standby systems, only 
exponential distribution has been considered for the 
distributions of the units composing standby systems 
and the Markov methods are used to obtain perform-
ance measures of the system. See, for example, [1], 
[2], [4], [8]-[10], and [11]. In this paper, we consider 
general distributions for the lifetimes of the units in a 
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Abstract  

Redundancy or standby is a technique that has been widely applied to improving system reliability and avail-
ability in the stage of system design. In this paper, we consider a standby system with two units in which the 
first unit (unit 1) starts its operation under active state and the other unit (unit 2) is under cold standby state at 
the starting point. After a specified time s (switching time), the state of unit 2 is changed to warm standby state 
and, as soon as the operating unit 1 fails, the state of unit 2 is changed to active state. If unit 1 fails before time 
s, the system fails. Units can fail at both active and warm standby states.  A general method for modeling the 
standby system is adopted and, based on it, system performance measures (system reliability and mean life) are 
derived. We consider the problem of determining optimal switching time which maximizes the expected sys-
tem life. Some numerical examples are studied. 
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standby system. For modelling lifetimes under dif-
ferent stress levels, as in [3], the basic statistical 
property commonly used in accelerated life tests will 
be employed. 

 
Figure 1. The State Diagram 

 
This paper is constructed as follows. In Section 2, 

the probabilistic frame for modelling the lifetime 
distribution of the standby unit is introduced. The 
accelerated life model and the concept of virtual age 
are used for modelling the stochastic failure of a 
standby unit. Some discussions on the relationship 
between the concepts used in this paper and those 
proposed in [5] and [6] are made. In Section 3, con-
sidering general standby system with switching time, 
system reliability function and mean lifetime are de-
rived. The problem of determining optimal switching 
time which maximizes the expected life of the sys-
tem will be studied. Some numerical examples are 
also included in the section. Finally, in Section 4, 
some concluding remarks are discussed.  
 
2. Modelling the lifetime distribution of warm 
standby unit  

[3] developed a stochastic model for lifetime distri-
bution of a standby unit. In this paper, the model de-
veloped in [3] will be adopted for a standby unit in 
the system. This section introduces the probabilistic 
model for the lifetime distribution of a standby unit 
under different environments. The methodology used 
in this section is based on the basic statistical prop-
erty commonly used in accelerated life tests (ALT). 
More detailed background and motivation can be 
found in [3]. [5] introduced two models for model-
ling lifetimes of wearing-out components operated in 
different environments in view of accumulated wear 
process and considered the change points in envi-
ronment. In [6], the statistical virtual age of a system 

was defined based on a model introduced in [5]. The 
approach introduced in this section and that given in 
[5] and [6] are quite different, but, basically, there 
are many similarities in the adopted stochastic meth-
odologies. 

In order to incorporate the basic statistical prop-
erty commonly used in ALT, it is necessary to inter-
pret the mechanism by which the accelerated lifetime 
is modelled. Denote random variable X  the lifetime 
of a component used in the usual level of environ-
ment and ( ), ( ), ( )F t f t r t , the distribution, probabil-
ity density and failure rate functions of X. Also de-
note random variable AX  the lifetime of a compo-
nent operated in the accelerate level of environment 
and ( ), ( ), ( )A A AF t f t r t  the corresponding distribu-
tion, probability density and failure rate functions, 
respectively. The ‘Accelerated Failure Time’(AFT) 
regression model is the most widely used parametric 
failure time regression model in ALT. Under this 
model higher stress has the effect of shrinking time 
through a scale factor. This can be expressed  

 

    ( ) ( ), 0,AF t F t tρ= ∀ ≥                                      (1) 

 
where ρ  is a constant called the ‘acceleration factor’ 
and it depends on the accelerated stresses. As given 
in Section 3 of [7], a more general model can be ex-
pressed as 
 
   ( ) ( ( )), 0,AF t F t tρ= ∀ ≥                                     (2) 

 
where ( )tρ  depends on the accelerated environment. 
Since the accelerated environment gives rise to 
higher stresses than usual environment, reasonable 
assumptions are 1ρ ≥  for the model (1) and 

( )t tρ ≥  for all t and (0) 0ρ =  for the model (2). 

Furthermore it should be assume that ( )tρ  is a non-
decreasing function. Then the model given in (2) im-
plies that the lifetime of a component in the usual 
level of environment is larger than that in the accel-
erated environment in the sense that 
 

   ,0),()( ≥∀≥ ttFtF A  
 
that is, X  is greater than AX  in the usual stochastic 

order, denoted by XX stA ≤ . 

In standby systems, the standby unit in warm 
standby state can be considered to be operated in an 
environment which is milder than the usual level of 
environment. Thus, if we let MX  be the lifetime of a 
standby unit in warm standby state, then the distri-
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tion function can be expressed,  
 

   ( ) ( ( )), 0,MF t F t tγ= ∀ ≥                                    (3) 
 
where ( )t tγ ≤  for all t, (0) 0γ = , and ( )tγ  is a 
non-decreasing function. Then the model given in (3) 
implies that Mst XX ≤ . 

In ALT, an important issue is related to the failure 
process after the change of the stress level on a unit. 
Similar problem can arise when there is a change of 
states in a standby unit. In standby system, after the 
starting point of warm operation there are two stress 
levels, i.e. the stress levels under warm standby state 
and active state, and we introduce the virtual age 
concept as a simple model. Suppose that a standby 
unit has been operated during [0, u] without failure 
under warm standby state and it is just activated at u. 
Then we assume that the failure distribution function 
of the unit is related to ( )F t  but the age of the unit 

at time u is )(uw  which is not greater than u . Thus, 
under this assumption, the distribution function of 
the residual lifetime of the standby unit which has 
been just activated at u  is given by 

 
( )

( ) 0

( ( ) )
exp{ ( ) } exp{ ( ( ) ) }, 0

( ( ))

w u t t

w u

F w u t
r t dt r w u t dt t

F w u

++ = − = − + ≥∫ ∫  

                                                                                (4) 
 
where ( )w u u≤  for all u, and (0) 0w =  is assumed 
to be a non-decreasing function. Then the equation 
(4) implies that the deteriorated level of the unit 
which has been operated under warm standby state 
during [0,u] is the same as that of a unit which has 
been operated in the usual level of environment dur-
ing [0,w(u)]. 
 
Remark: In cumulative exposure model (refer Nelson 
(1990)), if the following relationship is assumed, 
 

))(()( uwFuFM =  
 
then it obviously holds that 
 

).())(()( 1 uuFFuw γγ == −  
 
3. System performance and optimal switching 
time 

In this section the system performance measures are 
derived under the model described in the previous 
section and the optimal switching time will be con-
sidered.  
 

Notation 

( ), ( ), ( )ii iF t F t f t  : Cumulative distribution function, 

survival function and probability density function of 
unit i at active state 

22 2( ), ( ), ( )mm mF t F t f t  : Cumulative distribution 

function, survival function and probability density 
function of unit 2 at warm state, .2,1=i  

( )w t  : Virtual age of a unit which has been operated 

during ],0[ t  without failure under warm standby 
state and is just activated at t. 
s  : switching time to warm standby state of unit 2. 
 
In this paper, the optimal switching time is defined in 
the following Definition 1. 
 
Definition 1. 
A non-negative real value *s  which satisfies   
 
   sss

ETET 0max* ≥= , 

 
where sET  is the mean lifetime of the system as a 

function of switching time s , is called the optimal 
switching time. 
 
 Assumptions 
1. Unit 1 and 2 have three states: active, warm, cold. 
2. At starting point, the first unit is operated in active 
state and the second unit is switched to warm state 
after specified time, s. 
3. Switching from warm state to active state is per-
fect, i.e. instantaneous and failure-free.    
 
To obtain the system reliability, we consider two ex-
clusive cases when the system survives time t.  
Case 1: the first unit does not fail until t 
Case 2: the first unit fails before t and the second unit 
is ready in warm state at failure time of the first unit. 
The second unit survives the remaining time.  
From two exclusive events, we can obtain the system 
reliability as follows; 
If t is less than s, the system reliability is given by 
 

   )()( 1 tFtRs = . 

 
Otherwise,  
 

   
∫ −
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and the mean life is given by 
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We consider special cases and numerical examples. 
First, we consider a special case in which the failure 
distributions of units in active state are exponential 

distributions with t
ii

ietf λλ −=)( , ,2,1=i , respec-

tively. In this case, if we assume that 
tt )/()( 20 λλγ = , where 20 λλ < , then we have 

t
m etF 0)(2

λ−=  and t
m etf 0

02 )( λλ −= . Hence, in this 

case, the distributions of units in both active and 
warm standby states are exponential distributions. 
Note that, in this case, the distribution of the standby 
unit under active state does not depend on the func-
tion ( )w u  since its distribution after activation fol-
lows an exponential distribution. So it is unnecessary 
to define the function ( )w u  in this case. 
In this case, the system reliability is given by 
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                                                                         (7) 
The mean life of the system is given by 
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         (8) 
From the equation (8), we can easily find that the 
optimal switching time which maximizes the mean 
time to failure of system is given by 0.  
In the case of s=0, the system reliability is given by 
 

   }{)( )(
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The mean life of the system is given by 
 

   1

1 0 1 2

1
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λ

λ λ λ λ
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The above two results are identical to the results give
n in [8] and [4]. As another particular case, we consi
der Weibull distributions with IFR, 

2( )
1 2( ) 1 , 1it

iF t e λ λ λ−= − = = ,  ( )t tγ α=  a n d

 ( )w u tβ= .  The system reliability is given by 
 

2

2 2 2 2 2 2( ) ( ( ) ) ( ( ))
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t
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And the expected life is given by 
 

2 2 2 2 2 2( ) ( ( ) ) ( ( ))

0
2

tu u s u s t u u s u
s s s

ET e du e ududtα β β∞ ∞− − − − − + − + − −= +∫ ∫ ∫ . 

 
As a special case, we consider the case 
with 0.5α β= =  . Figure 2 shows the reliability 
function in case that s=0.5. Figure 3 shows the ex-
pected life as a function of s and we can find the fact 
that the delayed starting can lengthen the expected 
system life. From Figure 3, when the distribution of 
the components follow IFR Weibull, there exists a 
unique optimal switching time which maximizes the 
expected system life time. 
 

 
Figure 2. Reliability function (s=0.5) 
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Figure 3. Expected system life  
 
4. Conclusion 

A standby structure is adopted to improve system 
performance. In almost all of the studies on standby 
systems, only exponential distribution has been con-
sidered for the distributions of the units composing 
standby systems and the Markov methods are used to 
obtain performance. In this paper, the distributions of 
lifetimes of units can have arbitrary continuous dis-
tributions. Considering the situation when the state 
change from cold standby to active state is not 
smooth and continuous, a switching time is adopted, 
which makes a continuous operation of the system 
after the failure of the main component. The reliabil-
ity function and mean time to failure of the standby 
system has been derived. Furthermore, the problem 
of determining the optimal switching time has been 
investigated. The case of IFR Weibull was consid-
ered and it has been illustrated that there exists a 
unique optimal switching time which maximizes the 
mean time to failure of the standby system. 
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