PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technical-economic comparative analysis of energy storage systems equipped with a hydrogen generation installation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a technical-economic comparative analysis of two energy storage systems integrated with a wind farm: Power-to-Gas-to-Gas Grid (Case A) and Power-to-Gas-to-Power (Case B). The aim of the technical analysis which was to determine the power characteristics of particular installations forming the storage systems and to assess the impact of the nominal power of hydrogen generators on basic technical indicators, which can influence investment decisionmaking. The economic analysis included factors such as the impact of grants, the sale price of the product and the purchase price of electricity on the NPVR (Net Present Value Ratio), depending on the nominal power of hydrogen generators. The break-even unit investment costs were determined for both cases with nominal power of the hydrogen generators of 5 MW depending on the purchase price of electricity and the sale price of the main product .
Rocznik
Strony
92--100
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, 18 Konarskiego Street, 44-100 Gliwice, Poland
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, 18 Konarskiego Street, 44-100 Gliwice, Poland
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, 18 Konarskiego Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] L. Hong, H. Lund, B. Möller, The importance of flexible power plant operation for jiangsu’s wind integration, Energy 41 (1) (2012) 499–507.
  • [2] X. Zhao, S. Zhang, Y. Zou, J. Yao, To what extent does wind power deployment affect vested interests? a case study of the northeast china grid, Energy policy 63 (2013) 814–822.
  • [3] S. Spiecker, C. Weber, The future of the european electricity system and the impact of fluctuating renewable energy–a scenario analysis, Energy Policy 65 (2014) 185–197.
  • [4] H. Lund, G. Salgi, B. Elmegaard, A. N. Andersen, Optimal operation strategies of compressed air energy storage (caes) on electricity spot markets with fluctuating prices, Applied thermal engineering 29 (5) (2009) 799–806.
  • [5] G. Guandalini, S. Campanari, M. C. Romano, Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment, Applied Energy 147 (2015) 117–130.
  • [6] C. Bussar, P. Stöcker, Z. Cai, L. Moraes Jr, D. Magnor, P. Wiernes, N. van Bracht, A. Moser, D. U. Sauer, Large-scale integration of renewable energies and impact on storage demand in a european renewable power system of 2050-sensitivity study, Journal of Energy Storage 6 (2016) 1–10.
  • [7] J. Milewski, M. Wolowicz, K. Badyda, Z. Misztal, 36 kw polymer exchange membrane fuel cell as combined heat and power unit, ECS Transactions 42 (1) (2012) 75–87.
  • [8] M. Budt, D. Wolf, R. Span, J. Yan, A review on compressed air energy storage: Basic principles, past milestones and recent developments, Applied Energy 170 (2016) 250–268.
  • [9] J.-L. Liu, J.-H. Wang, A comparative research of two adiabatic compressed air energy storage systems, Energy Conversion and Management 108 (2016) 566–578.
  • [10] E. A. Bouman, M. M. Øberg, E. G. Hertwich, Environmental impacts of balancing offshore wind power with compressed air energy storage (caes), Energy 95 (2016) 91–98.
  • [11] J. Kotowicz, M. Jurczyk, Efficiency of diabatic caes installation, Rynek Energii 119 (4) (2015) 49–56.
  • [12] X. Luo, J. Wang, M. Dooner, J. Clarke, C. Krupke, Overview of current development in compressed air energy storage technology, Energy Procedia 62 (2014) 603–611.
  • [13] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, A comprehensive review on pem water electrolysis, International journal of hydrogen energy 38 (12) (2013) 4901–4934.
  • [14] D. Węcel, W. Ogulewicz, J. Kotowicz, M. Jurczyk, Dynamics of electrolysers operation during hydrogen production, Rynek Energii 122 (1) (2016) 59–65.
  • [15] N. Briguglio, G. Brunaccini, S. Siracusano, N. Randazzo, G. Dispenza, M. Ferraro, R. Ornelas, A. Arico, V. Antonucci, Design and testing of a compact pem electrolyzer system, International Journal of Hydrogen Energy 38 (26) (2013) 11519–11529.
  • [16] J. Milewski, G. Guandalini, S. Campanari, Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches, Journal of Power Sources 269 (2014) 203–211.
  • [17] C. Ziems, D. Tannert, H. J. Krautz, Project presentation: Design and installation of advanced high pressure alkaline electrolyzer-prototypes, Energy Procedia 29 (2012) 744–753.
  • [18] M. Hammoudi, C. Henao, K. Agbossou, Y. Dubé, M. Doumbia, New multi-physics approach for modelling and design of alkaline electrolyzers, international journal of hydrogen energy 37 (19) (2012) 13895–13913.
  • [19] J. Milewski, A. Szczęśniak, J. Lewandowski, Dynamic characteristics of auxiliary equipment of sofc/soec hydrogen peak power plant, IERI Procedia 9 (2014) 82–87.
  • [20] J. Sanz-Bermejo, J. Muñoz-Antón, J. Gonzalez-Aguilar, M. Romero, Part load operation of a solid oxide electrolysis system for integration with renewable energy sources, International Journal of Hydrogen Energy 40 (26) (2015) 8291–8303.
  • [21] J. P. Stempien, Q. Sun, S. H. Chan, Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions, Energy 55 (2013) 647–657.
  • [22] A. Odukoya, G. Naterer, M. Roeb, C. Mansilla, J. Mougin, B. Yu, J. Kupecki, I. Iordache, J. Milewski, Progress of the iahe nuclear hydrogen division on international hydrogen production programs, International Journal of Hydrogen Energy 41 (19) (2016) 7878–7891.
  • [23] G. Gahleitner, Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications, International Journal of Hydrogen Energy 38 (5) (2013) 2039–2061.
  • [24] J. Milewski, W. Bujalski, M. Wołowicz, K. Futyma, J. Kucowski, R. Bernat, Experimental investigation of co 2 separation from lignite flue gases by 100 cm 2 single molten carbonate fuel cell, International Journal of Hydrogen Energy 39 (3) (2014) 1558–1563.
  • [25] M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable power-to-gas: A technological and economic review, Renewable Energy 85 (2016) 1371–1390.
  • [26] S. B. Walker, D. van Lanen, M. Fowler, U. Mukherjee, Economic analysis with respect to power-to-gas energy storage with consideration of various market mechanisms, International Journal of Hydrogen Energy 41 (19) (2016) 7754–7765.
  • [27] M. Jentsch, T. Trost, M. Sterner, Optimal use of power-to-gas energy storage systems in an 85% renewable energy scenario, Energy Procedia 46 (2014) 254–261.
  • [28] M. Rouholamini, M. Mohammadian, Energy management of a gridtied residential-scale hybrid renewable generation system incorporating fuel cell and electrolyzer, Energy and Buildings 102 (2015) 406–416.
  • [29] Chao E. M., Chase M., Jadd K., An economic analysis of the DTE energy hydrogen technology park. Center for Sustainable Systems University of Michigan. Report No. CSS06-10, May 11, 2006.
  • [30] S. B. Walker, U. Mukherjee, M. Fowler, A. Elkamel, Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative, International Journal of Hydrogen Energy 41 (19) (2016) 7717–7731.
  • [31] J. Kotowicz, M. Job, M. Brzęczek, The characteristics of ultramodern combined cycle power plants, Energy 92 (2015) 197–211.
  • [32] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, An analysis of the investment risk related to the integration of a supercritical coal-fired combined heat and power plant with an absorption installation for co 2 separation, Applied Energy 156 (2015) 423–435.
  • [33] MEGASTACK: Stack Design for a Megawatt Scale PEM Electrolyser. JU FCH project in the Seventh Framework Programme. Theme: SP1- JTI-FCH.2013.2.3 Grant Agreement No.: 621233. 2016, January.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7baf9eef-a0f0-4974-b647-9aaef87f8c17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.