PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Prediction of site overhead costs with the use of artificial neural network based model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Overheads, especially site overhead costs, constitute a significant component of a contractor's budget in a construction project. The estimation of site overhead costs based on traditional approach is either accurate but time consuming (in case of the use of detailed analytical methods) or fast but inaccurate (in case of the use of index methods). The aim of the research presented in this paper was to develop an alternative model which allows fast and reliable estimation of site overhead costs. The paper presents the results of the authors’ work on development of a regression model, based on artificial neural networks, that enables prediction of the site overhead cost index, which used in conjunction with other cost data, allows to estimate site overhead costs. To develop the model, a database including 143 cases of completed construction projects was used. The modelling involved a number of artificial neural networks of the multilayer perceptrons type, each with varying structures, activation functions and training algorithms. The neural network selected to be the core of developed model allows the prediction of the costs’ index and aids in the estimation of the site overhead costs in the early stages of a construction project with satisfactory precision.
Rocznik
Strony
973--982
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
autor
  • Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • [1] B. Adey, E. Bruehwiler, R. Hydan, Effect of common cause failures on indirect costs, J. Bridge Eng. 9 (2) (2004) 200–208.
  • [2] R. Apanavičienė, A. Daugėlienė, New classification of construction companies: overhead costs aspect, J. Civ. Eng. Manag. 17 (4) (2011) 457–466.
  • [3] F. Ascione, N. Bianco, C. De Stasio, G.M. Mauro, G.P. Vanoli, CASA, cost-optimal analysis by multi-objective optimisation and artificial neural networks: a new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building, Energy Build. 146 (2017) 200–219.
  • [4] M.E. Ashraf, Classifying construction contractors using unsupervised-learning neural networks, J. Constr. Eng. Manag. 132 (12) (2006) 1242–1253, art. no. 001612QCO.
  • [5] S.A. Assaf, A.A. Bubshait, S. Atiyah, M. Al-Shahri, Project overhead costs in Saudi Arabia, Cost Eng. 41 (4) (1999) 33–37.
  • [6] S.A. Assaf, A.A. Bubshait, S. Atiyah, M. Al-Shahri, The management of construction company overhead costs, Int. J. Proj. Manag. 19 (2001) 295–303.
  • [7] M. Attala, T. Hegazy, Predicting cost deviation in reconstruction projects: artificial neural networks versus regression, J. Constr. Eng. Manag. 129 (4) (2003) 405–411.
  • [8] D.M. Bates, D.G. Watts, Nonlinear Regression Analysis and Its Applications, vol. 2, Wiley, New York, 1988.
  • [9] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
  • [10] A.H. Boussabaine, A.P. Kaka, A neural networks approach for cost flow forecasting, Constr. Manag. Econ. 16 (4) (1998) 471–479.
  • [11] .M. Brook, Preliminaries in Estimating and Tendering for Construction Work, Butterworth-Heinemann, Oxford, 1998, pp. 189–203.
  • [12] C.T.W. Chan, The principal factors affecting construction project overhead expenses: an exploratory factor analysis approach, Constr. Manag. Econ. 30 (10) (2012) 903–914.
  • [13] C.T.W. Chan, Pasquire C., A decision-making matrix model for estimating construction project overheads, in: Procs., PMI Research Conference 2006, New Directions in Project Management, Project Management Institute, Montreal, Canada, 17–19 July, (2006) 1–11.
  • [14] Chartered Institute of Building, Project overheads, in: Code of Estimating Practice, 7th ed., Wiley-Blackwell, 2009.
  • [15] K.W. Chau, Application of a PSO-based neural network in analysis of outcomes of construction claims, Autom. Constr. 16 (5) (2007) 642–646.
  • [16] J.H. Chen, M.C. Su, C.Y. Chen, F.H. Hsu, C.C. Wu, Application of neural networks for detecting erroneous tax reports from construction companies, Autom. Constr. 20 (7) (2011) 935–939.
  • [17] J.H. Chen, L.R. Yang, W.H. Chen, C.K. Chang, Case-based allocation of onsite supervisory manpower, Constr. Manag. Econ. 26 (8) (2008) 805–814.
  • [18] M.Y. Cheng, H.C. Tsai, E. Sudjono, Evolutionary fuzzy hybrid neural network for dynamic project success assessment in construction industry, Autom. Constr. 21 (2012) 46–51.
  • [19] R. Cilensek, Understanding contractor overhead, Cost Eng. (AACE) 33 (12) (1991) 21–30.
  • [20] B. Cooke, Contract Planning and Contractual Procedures, Macmillan, Basingstoke, 1981.
  • [21] W.E. Coombs, W.J. Palmer, Construction Accounting and Financial Management, 4th ed., McGraw-Hill, New York, 1989.
  • [22] D.K.H. Chua, Y.C. Kog, P.K. Loh, E.J. Jaselskis, Model for construction budget performance – neural network approach, J. Constr. Eng. Manag. 12 (3) (1997) 214–222.
  • [23] F.R. Dagostino, L. Feigenbaum, Estimating in Building Construction, 6th ed., Pearson Education, Upper Saddle River, NJ, 2003.
  • [24] S.U. Dikmen, M. Sonmez, An artificial neural networks model for the estimation of formwork labour, J. Civ. Eng. Manag. 17 (3) (2011) 340–347.
  • [25] I.Y. El-Sawy, H.E. Hosny, M.A. Razek, A neural network model for construction projects site overhead cost estimating in Egypt, Int. J. Comput. Sci. Iss. 8 (3) (2011) 273–283.
  • [26] A. Enshassi, A.R. Aziz, A. Karriri, Investigating the overhead costs in construction projects in Palestine, J. Finan. Manag. Prop. Constr. 13 (1) (2008) 35–47.
  • [27] S. Geddes, Preliminaries in Estimating for Building and Civil Engineering Works, 9th ed., Butterworth-Heinemann, Oxford, 1996.
  • [28] S. Haykin, Neural Networks. A Comprehensive Foundation, Prentice Hall, 1994.
  • [29] T. Hegazy, A. Amr, Neural network model for parametric cost estimation of highway projects, J. Constr. Eng. Manag. 124 (3) (1998) 210–218.
  • [30] T. Hegazy, O. Moselhi, Elements of cost estimation: a survey in Canada and United States, Cost Eng. 37 (5) (1995) 27–30.
  • [31] S. Osowski, Sieci Neuronowe w Ujęciu Algorytmicznym, Wydawnictwa Naukowo-Techniczne, Warszawa, 1996.
  • [32] R.L. Peurifoy, G.D. Oberlender, Estimating Construction Costs, 4th ed., McGraw Hill, New York, 1989.
  • [33] E. Plebankiewicz, A. Leśniak, Overhead costs and profit calculation by Polish contractors, Technol. Econ. Dev. Econ. 19 (1) (2013) 141–161.
  • [34] Rsmeans Company, RSMeans Cost Data: Student Edition, John Wiley & Sons, Hoboken, NJ, 2012.
  • [35] K. Schabowicz, B. Hoła, Application of artificial neural networks in predicting earthmoving machinery effectiveness ratios, Arch. Civ. Mech. Eng. 8 (4) (2008) 73–84.
  • [36] A. Šiškina, A. Juodis, R. Apanavičienė, Evaluation of the competitiveness of construction company overhead costs, J. Civ. Eng. Manag. 15 (2) (2009) 215–224.
  • [37] M. Skibniewski, L.-C. Chao, Neural network method of estimating construction technology acceptability, J. Constr. Eng. Manag. 121 (1) (1995) 130–142.
  • [38] Stowarzyszenie Kosztorysantów Budowlanych, Polskie Standardy Kosztorysowania Robót Budowlanych, Warszawa, 2005.
  • [39] R. Tadeusiewicz, Sieci Neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa, 1993.
  • [40] H.I. Tebin, Pricing tenders for construction, Cost Eng. 51 (1) (2009) 7–14.
  • [41] B. Verlinden, J.R. Duflou, P. Collin, D. Cattrysse, Cost estimation for sheet metal parts using multiple regression and artificial neural networks: a case study, Int. J. Prod. Econ. 111 (2) (2008) 484–492.
  • [42] M. Wanous, H.A. Boussabaine, J. Lewis, A neural network bid/ no bid model: the case for contractors in Syria, Constr. Manag. Econ. 21 (7) (2003) 737–744.
  • [43] T.P. Williams, Predicting completed project cost using bidding data, Constr. Manag. Econ. 20 (3) (2002) 225–235.
  • [44] C.G. Wilmot, B. Mei, Neural network modeling of highway construction costs, J. Constr. Eng. Manag. 31 (7) (2005) 765–771.
  • [45] H.L. Yip, H. Fan, Y.H. Chiang, Predicting the maintenance cost of construction equipment: comparison between general regression neural network and Box–Jenkins time series models, Autom. Constr. 38 (2014) 30–38.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bac9b77-407e-47e1-a9e7-6980f3deecf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.