PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on the Effects of Acoustic Liner Variation and Geometry Discontinuities on the Acoustic Performance of Lined Ducts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noise reduction inside waveguide systems has gained momentum owing to a great interest in it. To attenuate the sound in a broad frequency range, this study aims to compare the effects of two acoustic liners, a perforated plate backed by an air cavity (PP-Air cavity), or by a porous material (PP-PM), on the acoustic behaviour of lined ducts using a numerical model to compute the multimodal scattering matrix. From this matrix, the reflection and the transmission coefficients are computed and therefore the acoustic power attenuation is deduced. Moreover, the effects of geometry of ducts with and without changes in the section are investigated. The numerical results are obtained for five configurations, including cases of narrowing and widening of a duct portion with sudden or progressive discontinuities. Accordingly, numerical coefficients of reflection and transmission as well as the acoustic power attenuation show the relative influence of acoustic liners in each type of configuration.
Rocznik
Strony
49--66
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Sciences of Sfax, BP 1171, 3000 Sfax, Tunisia
  • Laboratory of Mechanics, Modeling and Production (LA2MP), National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
autor
  • Laboratory of Mechanics, Modeling and Production (LA2MP), National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  • Faculty of Sciences of Sfax, BP 1171, 3000 Sfax, Tunisia
  • Laboratory of Mechanics, Modeling and Production (LA2MP), National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  • Faculty of Sciences of Sfax, BP 1171, 3000 Sfax, Tunisia
  • Laboratory of Mechanics, Modeling and Production (LA2MP), National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
Bibliografia
  • 1. Åbom M. (1991), Measurement of the scattering matrix of acoustical two-ports, Mechanical Systems Signal Processing, 5 (2): 89-104, doi: 0.1016/0888-3270(91)90017-Y.
  • 2. Allard J. F. (1993), Propagation of sound in porous media: Modeling sound absorbing materials, Elsevier Applied Science, London 1993, pp. 105-115.
  • 3. Auger J. M., Ville J. M. (1986), Flow effects on measurement of the modal decomposition of acoustic field in a hard wall cylindrical duct, [in:] Comte-Bellot G., Williams J. E. F. [Eds], Aero- and Hydro-Acoustics. IUTAM Symposia (International Union of Theoretical and Applied Mechanics, pp. 437-444, SpringerVerlag, Berlin, Heidelberg, doi: 10.1007/978-3-642-82758-7_41.
  • 4. Aurégan Y., Leroux M., Pagneux V. (2004), Measurement of liner impedance with flow by an inverse method, 10th AIAA/CEAS Aeroacoustics Conference, Manchester, doi: 10.2514/6.2004-2838.
  • 5. Ben Jdidia M., Akrout A., Taktak M., Hammami L., Haddar M. (2014), Thermal effect on the acoustic behavior of an axisymmetric lined duct, Applied Acoustics, 86: 138-145, 10.1016/j.apacoust.2014.03.004.
  • 6. Bodén H., Kabral R. (2015), The effect of high temperatures and grazing flow on the acoustic properties of liners, Proceedings of Euronoise 2015, C. Glorieux [Ed.], Maastricht, June 1-3, 2015, pp. 2261-2266.
  • 7. Busse-Gerstengarbe S. et al. (2012), Impedance eduction based on microphone measurements of liners under grazing flow conditions, AIAA Journal, 50 (4): 867-879, doi: 10.2514/1.J051232.
  • 8. Busse-Gerstengarbe S., Bake F., Enghardt L., Jones M. G. (2013), Comparative study of impedance eduction methods, Part 1: NASA tests and methodologies, AIAA-2124, 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, doi: 10.2514/6.2013-2124.
  • 9. Demir A. (2016), Sound transmission in a duct with sudden area expansion, extended inlet and lined walls in overlapping region, Advances in Acoustic and Vibration, 2016, Article ID 9485163, 8 pages, doi: 10.1155/2016/9485163.
  • 10. Demir A. (2017), Scattering matrices in non-uniformly lined ducts, Zeitschrift für angewandte Mathematik und Physik, 68 (1): 8, doi: 10.1007/s00033-016-0754-8.
  • 11. Dhatt G., Touzot G. (1989), Presentation of the finite element method, Maloine S.A. Editeur, Paris.
  • 12. El-Masri S. (2004), Analysis of discontinuities in rectangular ducts and higher order mode excitations using TLM and FEM methods, Journal of Numerical Modelling, Electronic Networks, Devices and Fields, 17: 353-364, doi: 10.1002/jnm.532.
  • 13. Elnady T. (2004), Modelling and characterization of perforates in lined ducts and mufflers, Ph.D. Thesis, The Royal Institute of Technology (KTH), Stockholm, Sweden.
  • 14. Elnady T., Åbom M., Allam S. (2010), Modeling perforated tubes in mufflers using two-ports, ASME Journal of Vibration and Acoustics, 132 (6): 061010, doi: 10.1115/1.4001510.
  • 15. Elnady T., Boden H. (2003), On semi-empirical liner impedance modeling with grazing flow, Proceedings of 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, pp. 1815-1825, May 12-14, 2003, Hilton Head, South Carolina, doi: 10.2514/6.2003-3304.
  • 16. Elnady T., Elsaadany S., Åbom M. (2009), Investigation into Modeling of Multi-Perforated, Mufflers, 16th International Congress on Sound and Vibration, Kraków, Poland, July 6-9.
  • 17. Jones M. G., Watson W. R. (2011), On the use of experimental methods to improve confidence in educed impedance, 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), No. AIAA 2011-2865, Portland, Oregon, doi: 10.2514/6.2011-2865.
  • 18. Jones M. G., Watson W. R., Howerton B. M., Busse-Gerstengarbe S. (2013), Comparative study of impedance eduction methods, Part 2: DLR tests and methodologies, 19th AIAA/CEAS Aeroacoustics Conference, AIAA-2125, Berlin Germany, doi: 10.2514/6.2013-2125.
  • 19. Kabral R., Bodén H., Elnady T. (2014), Determination of liner impedance under high temperature and grazing flow conditions, 20th AIAA/CEAS Aeroacoustics Conference, AIAA-2956, Atlanta, GA, USA, doi: 10.2514/6.2014-2956.
  • 20. Lafarge D., Lemarinier P., Allard J. F., Tarnow V. (1997), Dynamic compressibility of air in porous structures at audible frequencies, Journal of Acoustical Society of America, 102 (4): 1995-2006, doi: 10.1121/1.419690.
  • 21. Lee I. L., Selamet A., Huff N. T. (2006), Acoustic impedance of perforations in contact with fibrous material, Journal of Acoustical Society of America, 119 (5): 2785-2797, doi: 10.1121/1.2188354.
  • 22. Masmoudi A., Makni A., Taktak M., Haddar M. (2017), Effect of geometry and impedance variation on the acoustic performance of a porous material lined duct, Journal of Theoretical and Applied Mechanics, 55 (2): 679-694, doi: 10.15632/jtam-pl.55.2.679.
  • 23. Miles J. (1946a), The analysis of plane discontinuity in cylindrical tubes, Part I, Journal of the Acoustical Society of America, 17 (3): 259-271, doi: 10.1121/1.1916327.
  • 24. Miles J. (1946b), The analysis of plane discontinuity in cylindrical tubes, Part II, Journal of the Acoustical Society of America, 17 (3): 272-284, doi: 10.1121/1.1916328.
  • 25. Muehleisen R. T. (1996), Reflection, radiation, and coupling of higher order modes at discontinuities in finite length rigid walled rectangular ducts, Ph.D. Thesis, Pennsylvania State University, USA.
  • 26. Othmani C., Hentati T., Taktak M., Elnady T., Fakhfakh T., Haddar M. (2015), Effect of liner characteristics on the performance of duct systems, Archives of Acoustics, 40 (1): 117-127, doi: 10.1515/aoa-2015-0014.
  • 27. Sagartzazu X., Hervella-Nieto L., Pagalday J. M. (2008), Review in sound absorbing materials, Archives of Computational Methods in Engineering, 15 (3): 311-342, doi: 10.1007/s11831-008-9022-1.
  • 28. Sitel A., Ville J. M., Foucart F. (2003), An experimental facility for measurement of acoustic transmission matrix and acoustic power dissipation of duct discontinuity in higher order modes propagation conditions, Acta Acustica United with Acustica, 89: 586-594.
  • 29. Sitel A., Ville J. M., Foucart F. (2006), Multiload procedure to measure the acoustic scattering matrix of a duct discontinuity for higher order mode propagation conditions, Journal of the Acoustical Society of America, 120 (5): 2478-2490, doi: 10.1121/1.2354040.
  • 30. Taktak M., Majdoub M., Ben Tahar M., Haddar M. (2013), Numerical characterization of an axisymmetric lined duct with flow using multimodal scattering matrix, Journal of Theoretical and Applied Mechanics, 51 (2): 313-325.
  • 31. Taktak M., Majdoub M. A., Ben Tahar M., Haddar M. (2012), Numerical modelling of the sound propagation in axisymmetric lined flow duct, Archives of Acoustics, 37 (1): 151-160.
  • 32. Taktak M., Ville J. M., Haddar M., Foucart F. (2008), Evaluation of a lined duct performance based on a 3D two ports scattering matrix, Proceedings of Meetings in Acoustics, 4 (1), doi: 10.1121/1.2975221.
  • 33. Taktak M., Ville J. M., Haddar M., Gabard G., Foucart F. (2010), An indirect method for the characterization of locally reacting liners, Journal of the Acoustical Society of America, 127 (6): 3548-3559, doi: 10.1121/1.3365250.
  • 34. Ville J. M. (2014), Experimental methods in duct acoustics for higher order modes propagation conditions, Proceedings of Forum Acousticum, Kraków.
  • 35. Watson W. R., Jones M. G. (2013), A Comparative study of four impedance eduction methodologies using several test liners, 19th AIAA/CEAS Aeroacoustics Conference, AIAA-2274, Berlin, Germany, doi: 10.2514/6.2013-2274.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ba46fe0-9bec-4d3c-936d-e68cdcede113
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.