Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Nowe wieloskładnikowe funkcjonalizowane biopolimery o poprawionych właściwościach termicznych i dielektrycznych
Języki publikacji
Abstrakty
A new functionalized biopolymer was obtained by modifying chitin using ethylenediaminetetraacetic acid and magnetite nanoparticles (Fe3O4). Thermogravimetric analysis was performed, and dielectric properties were examined. The obtained biopolymer showed better thermal stability, as evidenced by a higher onset temperature. The activation energy calculated using imaginary impedance data and Nyquist plots was found to be consistent. Moreover, the dielectric permittivity decreased rapidly with increasing frequency. At high frequencies, there was no dependence of dielectric loss on temperature and frequency. The obtained biopolymer can be used in many applications such as microwave devices, deflection yoke, high-frequency capacitors, sensors, etc.
Otrzymano nowy funkcjonalizowany biopolimer poprzez modyfikację chityny przy użyciu kwasu etylenodiaminotetraoctowego i nanocząstek magnetytu (Fe3O4). Przeprowadzono analizę termograwimetryczną i zbadano właściwości dielektryczne. Otrzymany biopolimer wykazywał lepszą stabilność termiczną, o czym świadczyła wyższa temperatura początku rozkładu. Wykazano zgodność energii aktywacji obliczonej z wykorzystaniem danych dotyczących urojonej impedancji oraz na podstawie wykresów Nyquista. Przenikalność dielektryczna zmniejszała się gwałtownie wraz ze wzrostem częstotliwości. Przy wysokich częstotliwościach nie stwierdzono zależności stratności dielektrycznej od temperatury i częstotliwości. Otrzymany biopolimer można wykorzystać w wielu zastosowaniach, takich jak urządzenia mikrofalowe, jarzmo odchylające, kondensatory wysokiej częstotliwości, czujniki itp.
Czasopismo
Rocznik
Tom
Strony
386--395
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- Department of Physics, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
autor
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 82817, Saudi Arabia
autor
- Department of Physics, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
autor
- Department of Physics, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
autor
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi 110021, India
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
autor
- Advance Chemistry Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
autor
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
autor
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
autor
- Department of Physics, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
Bibliografia
- [1] Lv J., Lv X., Ma M. et al.: Carbohydrate Polymers 2023, 299, 120142. https://doi.org/10.1016/j.carbpol.2022.120142
- [2] Vinodh R., Sasikumar Y., Kim H.J. et al.: Journal of Industrial and Engineering Chemistry 2021, 104, 155. https://doi.org/10.1016/j.jiec.2021.08.019
- [3] Wang C., Yokota T., Someya T.: Chemical Reviews 2021, 121(4), 2109. https://doi.org/10.1021/acs.chemrev.0c00897
- [4] Mittal P., Yadav S., Negi S.: Materials Science in Semiconductor Processing 2021, 133, 105975. https://doi.org/10.1016/j.mssp.2021.105975
- [5] Cui C., Fu Q., Meng L. et al.: ACS Applied Biomaterials 2021, 4(1), 85. https://doi.org/10.1021/acsabm.0c00807
- [6] Ha J.M., Hur S.H., Pathak A. et al.: NPG Asia Materials 2021, 13(1), 53. https://doi.org/10.1038/s41427-021-00318-8
- [7] Raghavan A., Ghosh S.: Chemistry Select 2021, 6(47), 13647. https://doi.org/10.1002/slct.202103291
- [8] Asghari F., Samiei M., Adibkia K. et al.: Artificial Cells, Nanomedicine, and Biotechnology 2017, 45(2), 185. https://doi.org/10.3109/21691401.2016.1146731
- [9] Bhaskar B., Nagarjuna V.: “Biomaterials, Tissue Engineering, and Regenerative Medicine: A Brief Outline” in “Biomaterials in Tissue Engineering and Regenerative Medicine”, Springer Singapore 2021. p. 3. https://doi.org/10.1007/978-981-16-0002-9_1
- [10] Hasnain M.S., Ahmed S.A., Alkahtani S. et al.: “Biopolymers for Drug Delivery” in “Advanced Biopolymeric Systems for Drug Delivery”, Springer Cham, Switzerland 2020, p. 1. https://doi.org/10.1007/978-3-030-46923-8_1
- [11] Kaushik A., Solanki P.R., Ansari A.A. et al.: Sensors and Actuators B: Chemical 2009, 138(2), 572. https://doi.org/10.1016/j.snb.2009.02.005
- [12] Ramesan M.T., Privya P.P., Jayakrishnan P. et al.: Polymer Composites 2018, 39(S1), E540. https://doi.org/10.1002/pc.24688
- [13] Ramesan M.T., Subburaj M., Mathew G., Bahuleyan B.K.: Journal of Thermoplastic Composite Materials 2023, 36(3), 984. https://doi.org/10.1177/08927057211046282
- [14] Kumar M.N.R.: Reactive and Functional Polymers 2000, 46(1), 1. https://doi.org/10.1016/S1381-5148(00)00038-9
- [15] Hu X., Ricci S., Naranjo S. et al.: Molecules 2021, 26(15), 4499. https://doi.org/10.3390/molecules26154499
- [16] Ikram R., Jan B.M., Qadir M.A. et al.: Polymers 2021, 13(19), 3266. https://doi.org/10.3390/polym13193266
- [17] Safarzadeh M., Sadeghi S., Azizi M. et al.: International Journal of Biological Macromolecules 2021, 183, 235. https://doi.org/10.1016/j.ijbiomac.2021.04.157
- [18] Bhatt A.S., Bhat D.K., Santosh M.S.: Physica B: Condensed Matter 2010, 405(8), 2078. https://doi.org/10.1016/j.physb.2010.01.106
- [19] Simoes R., Silva J., Lanceros-Mendez S., Vaia R.: Journal of Materials Science 2010, 45, 268. https://doi.org/10.1007/s10853-009-3937-2
- [20] Elsawy M.A., Saad G.R., Sayed A.M.: Polymer Engineering and Science 2016, 56(9), 987. https://doi.org/10.1002/pen.24328
- [21] Shahid M., Austruy A., Echevarria G. et al.: Soil and Sediment Contamination: An International Journal 2014, 23(4), 389. https://doi.org/10.1080/15320383.2014.831029
- [22] Sun B., Zhao F.J., Lombi E. et al.: Environmental pollution 2001, 113(2), 111. https://doi.org/10.1016/S0269-7491(00)00176-7
- [23] Oviedo C., Rodríguez J.: Quimica Nova 2003, 26, 901. https://doi.org/10.1590/S0100-40422003000600020
- [24] Kanagathara N., Sankar S., Saravanan L. et al.: Advances in Condensed Matter Physics 2022, Article ID: 6002025. https://doi.org/10.1155/2022/6002025
- [25] Rogovina S.Z., Alexanyan C.V., Prut E.V.: Journal of Applied Polymer Science 2011, 121(3), 1850. https://doi.org/10.1002/app.33477
- [26] Liu Z., Wang J., Xie D. et al.: Small 2008, 4(4), 462. https://doi.org/10.1002/smll.200701018
- [27] Holzwarth U, Gibson N.: Nature Nanotechnology 2011, 6, 534. https://doi.org/10.1038/nnano.2011.145
- [28] Jayakumar R., Selvamurugan N., Nair S. V. et al.: International Journal of Biological Macromolecules 2008, 43(3), 221. https://doi.org/10.1016/j.ijbiomac.2008.07.004
- [29] Shankar S., Reddy J. P., Rhin J.W. et al.: Carbohydrate Polymers 2015, 117, 468, https://doi.org/10.1016/j.carbpol.2014.10.010
- [30] Hooda S., Rani S., Raj V.B. et al.: Rasayan Journal of Chemistry 2023,16(3), 1495. http://doi.org/10.31788/RJC.2023.1638445
- [31] Triyono D., Supriyadi Y., Laysandra, H.: Journal of Advanced Dielectrics 2019, 9(4), 950029. https://doi.org/10.1142/S2010135X19500292
- [32] Rani S., Hooda S., Dheer N. et al.: Applied Chemical Engineering 2023, 6(1), 59. https://doi.org/10.24294/ace.v6i1.1965
- [33] Dong J., Li B., Xiao J. et al.: Carbon 2022, 199, 151. https://doi.org/10.1016/j.carbon.2022.07.035
- [34] Guan X., Yuan X., Zhao Y. et al.: Science of The Total Environment 2022, 838, 155693. https://doi.org/10.1016/j.scitotenv.2022.155693
- [35] Ambrosio R., Carrillo A., Mota M.L. et al.: Polymers 2018, 10(12), 1370. https://doi.org/10.3390/polym10121370
- [36] Sengupta P., Sadhukhan P., Ray A. et al.: Journal of Alloys and Compounds 2022, 892, 162216. https://doi.org/10.1016/j.jallcom.2021.162216
- [37] Bendahhou A., Chourti K., El Bouayadi R. et al.: RSC Advances 2020, 10(47), 28007. https://doi.org/10.1039/D0RA05163B
- [38] Batoo K.M., Kumar S., Lee C.G. et al.: Current Applied Physics 2009, 9(5), 1072. https://doi.org/10.1016/j.cap.2008.12.002
- [39] Ponpandian N., Balaya P., Narayanasamy A.: Journal of Physics: Condensed Matter 2002, 14(12), 3221. https://doi.org/10.1088/0953-8984/14/12/311
- [40] Guo W.X., Tan P.F., Ouyang X.P. et al.: AIP Advances 2018, 8(10), 101336. https://doi.org/10.1063/1.5043049
- [41] Ghosh P., Bhowmik R.N., Das M.R., Mitra P.: Physica E: Low-dimensional Systems and Nanostructure 2017, 88, 218. https://doi.org/10.1016/j.physe.2017.01.019
- [42] Pearson G.L.: Electrical Engineering 1947, 66(7), 638.
- [43] Chanu L.P., Phanjoubam S.: Journal of Materials Science: Materials in Electronics 2022, 33(9), 6107. https://doi.org/10.1007/s10854-022-07788-8
- [44] Thakur A., Mathur P., Singh M.: Journal of Physics and Chemistry of Solids 2007, 68(3), 378. https://doi.org/10.1016/j.jpcs.2006.11.028
- [45] Yang K., Huang X., Huang Y. et al.: Chemistry of Materials 2013, 25(11), 2327. https://doi.org/10.1021/cm4010486
- [46] Singh C., Bai Y., Mishra S.R. et al.: Applied Physics A 2022, 128(9), 820. https://doi.org/10.1007/s00339-022-05974-3
- [47] Chahar D., Taneja S., Thakur P., Thakur A.: Journal of Alloys and Compounds 2020, 843, 155681. https://doi.org/10.1016/j.jallcom.2020.155681
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ba1998f-36f4-44e3-9d50-65884ee17060