PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

C,N-cyklometalowane kompleksy irydu(III) : wydajne emitery fosforescencyjne dla organicznych diod elektroluminescencyjnych (OLED). Cz. 1 i 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
C,N-cyclometalated iridium(III) complexes : efficient phosphorescent emitters for organic electroluminescent diodes (OLED). Part 1 and 2
Języki publikacji
PL
Abstrakty
EN
Organic electroluminescent panels have been widely available on the commercial market for several years, in the form of screens used in mobile phones, tablets, and TV sets. The display panels are produced in RGB technology, in which iridium(III) coordination compounds act as phosphorescent emitters of red and green light. Because of their high emission quantum efficiency and stability, the emitters containing 2-phenylpyridinato ligands and their derivatives have proved to be particularly useful. An interesting issue was the contrast between an extensive state of knowledge on the abovementioned compounds and a poor state of knowledge on analogous iridium(III) complexes equipped with benzo[h]quinolinato ligands. Application of the latter seemed interesting because of the similar size of benzo[h]quinoline and 2-phenylpyridine coordination pockets, but much more rigid structure and a greater degree of conjugation of the former, which could have a significant impact on the properties of complexes equipped with this type of ligand. Regarding to the above, this dissertation concerns the subject of the design and synthesis of new iridium(III) coordination compounds equipped with a benzo[h]quinoline motif, as well as the analysis of the structural changes impact on the photophysical, electroluminescent, thermal, electrochemical and spectroscopic properties of selected classes of compounds targeted for the application in OLED technology. Accordingly, the article presents the results of studies on two classes of heteroleptic of C,N-cyclometalated iridium(III) complexes, namely, of the salt type with the general formula [Ir(bzq)2(N^N)]+A-, stabilized by structurally different N,N-donating ligands, as well as neutral coordination compounds of the type [Ir(bzq)2(N^O)], bearing N,O-donating ß-ketoiminato ligands in the structure equipped with aryl moieties of various structure. The work included research on the determination of the correlation between the structure of ancillary ligand introduced into the coordination sphere of the metal and the above-mentioned properties. Additionally, based on the results of quantum-chemical calculations, work was undertaken to develop synthetic pathways enabling the incorporation to the C,N-cyclometalating benzo[h]quinoline ligand of substituents characterized by different stereo-electronic properties, enabling the modification of the emission parameters of the target complexes. In the next phase of research, the functionalized precursors of the bzq ligand were successfully used in the synthesis of binuclear complexes, key reagents in the preparation of corresponding mononuclear iridium coordination derivatives with electroluminescent properties.
Rocznik
Strony
163--231
Opis fizyczny
Bibliogr. 172 poz., rys., schem., tab.
Twórcy
  • Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Uniwersytetu poznańskiego 8, 61-614 Poznań
  • Centrum Zaawansowanych Technologii, Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Uniwersytetu poznańskiego 10, 61-614 Poznań
  • Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Uniwersytetu poznańskiego 8, 61-614 Poznań
  • Centrum Zaawansowanych Technologii, Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Uniwersytetu poznańskiego 10, 61-614 Poznań
Bibliografia
  • [1] A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys., 1953, 50, 64.
  • [2] A. Bernanose, P. Vouaux, J. Chim. Phys., 1953, 50, 261.
  • [3] A. Bernanose, J. Chim. Phys., 1955, 52, 396.
  • [4] H. Kallmann, M. Pope, J. Chim. Phys., 1960, 32, 300.
  • [5] H. Kallmann, M. Pope, Nature, 1960, 186, 31.
  • [6] C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
  • [7] Y. Sato, S. Ichinosawa, H. Kanai, IEEE J. Sel. Top. Quantum Electron., 1998, 4, 40.
  • [8] C. David, M. Piens, G. Geuskens, Eur. Polym. J., 1972, 8, 1291.
  • [9] M. Uchida, Y. Ohmori, C. Morishima, K. Yoshino, Synth. Met., 1993, 57 4168.
  • [10] G. Grem, G. Ledetzky, G. Leising, Adv. Mater., 1992, 4, 36.
  • [11] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature, 1990, 347, 539.
  • [12] S.R. Tseng, Y.S. Chen, H.F. Meng, H.C. Lai, C.H. Yeh, S.F. Horng, H.H. Liao, C.S. Hsu, Synth. Met., 2009, 159, 137.
  • [13] Y. Li, J.-Y. Liu, Y.-D. Zhao, Y.-C. Cao, Mater. Today, 2017, 20, 258.
  • [14] H. Zhang, X. Sun, S. Chen, Adv. Funct. Mater., 2017, 27, 1603007.
  • [15] S.-J. Zou, Y. Shen, F.-M. Xie, J.-D. Chen, Y.-Q. Li, J.-X. Tang, Mater. Chem. Front., 2020, 4, 788.
  • [16] M. Segal, M.A. Baldo, R.J. Holmes, S.R. Forrest, Z.G. Soos, Phys. Rev. B, 2003, 68, 075211.
  • [17] X. Yang, G. Zhou, W.-Y. Wong, Chem. Soc. Rev., 2015, 44, 8484.
  • [18] C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl. Phys., 2001, 90, 5048.
  • [19] Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915.
  • [20] D. Zhou, W.-P. To, Y. Kwak, Y. Cho, G. Cheng, G. S. M. Tong, C.-M. Che, Adv. Sei., 2019, 6, 1802297.
  • [21] P.J. Conaghan, C.S.B. Matthews, F. Chotard, S.T.E. Jones, N.C. Greenham, M. Bochmann, D. Credgington, A.S. Romanov, Nat. Commun., 2020, 11, 1758.
  • [22] D. Di, A.S. Romanov, L. Yang, J.M. Richter, J.P.H. Rivett, S. Jones, T.H. Thomas, M.A. Jalebi, R.H. Friend, M. Linnolahti, M. Bochmann, D. Credgington, Science, 2017, 356, 159.
  • [23] J.-H. Lee, C.-H. Chen, P.-H. Lee, H.-Y. Lin, M.-K. Leung, T.-L. Chiu, C.-F. Lin, J. Mater. Chem. C, 2019, 7, 5874.
  • [24] Maschen (twórca), LS coupling (obraz cyfrowy), 22 ХП 2011 (dzień publikacji), pobrano z https://commons.wikimedia.org/wiki/File:LS_coupling.svg.
  • [25] Highly Efficient OLEDs with Phosphorescent Materials, ed. H. Yersin, John Wiley & Sons: Newark, NJ, 2008.
  • [26] B. Minaev, G. Baryshnikov, H. Agren, Phys. Chem. Chem. Phys., 2014, 16, 1719.
  • [27] Iridium(III) in Optoelectronic and Photonics Applications, ed. E. Zysman-Colman, John Wiley & Sons: Newark, NJ, 2017.
  • [28] A. F. Henwood, E. Zysman-Colman, Chem. Commun., 2017, 53, 807.
  • [29] K.A. King, P.J. Spellane, R.J. Watts, J. Am. Chem. Soc., 1985, 107, 1431.
  • [30] T. Sajoto, P.I. Djurovich, A.B. Tamayo, J. Oxgaard, W.A. Goddard, M.E. Thompson, J. Am. Chem. Soc., 2009, 131, 9812.
  • [31] T.-Y. Li, J. Wu, Z.-G. Wu, Y.-X. Zheng, J.-L. Zuo, Y. Pan, Coord. Chem. Rev., 2018, 374, 55.
  • [32] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem. Soc., 2003, 125, 12971.
  • [33] J.M. Femández-Hmrádez, J.I. Beltrán, V. Lemaur, M.-D. Gálvez-L^ez, C.-H. Chien, F. Polo, E. Orselli, R. Fröhlich, J. Comil, L. De Cola, Inorg. Chem., 2013, 52, 1812.
  • [34] K.-Y. Lu, H.-H. Chou, C.-H. Hsieh, Y.-H. O. Yang, H.-R. Tsai, H.-Y. Tsai, H.-Y. Tsai, L.-C. Hsu, C.-Y. Chen, I-С. Chen, C.-H. Cheng, Adv. Mater., 2011, 23, 4933.
  • [35] R.J. Holmes, S.R. Forrest, T. Sajoto, A. Tamayo, P.I. Djurovich, M.E. Thompson, Appl. Phys. Lett., 2005, 87, 243507.
  • [36] J. Lee, H.-F. Chen, T. Batagoda, C. Coburn, P.I. Djurovich, M.E. Thompson, S.R. Forrest, Nature Mater., 2016, 15, 92.
  • [37] M. Nonoyama, B. Chem. Soc. Jpn., 1974, 47, 767.
  • [38] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem., 2001, 40, 1704.
  • [39] I. Takashi, K. Hideo, S. Yoshiro, U. S. Patent Application US2013/203997A1 2013.
  • [40] B. Carlson, G. D. Phelan, W. Kaminsky, L. Dalton, X. Jiang, S. Liu, A. K.-Y. Jen, J. Am. Chem. Soc., 2002, 124, 14162.
  • [41] S. Bernhard, X. Gao, G.G. Malliaras, H.D. Abruna, Adv. Mater., 2002, 14, 433.
  • [42] J. Slinker, D. Bernards, P.L. Houston, H.D. Abruna, S. Bernhard, G.G. Malliaras, Chem. Commun., 2003, 2392.
  • [43] F.G. Gao, A.J. Bard, J. Am. Chem. Soc., 2000, 122, 7426.
  • [44] H. Rudmann, S. Shimada, M.F. Rubner, J. Am. Chem. Soc., 2002, 124, 4918.
  • [45] M. Buda, G. Kalyuzhny, A.J. Bard, J. Am. Chem. Soc., 2002, 124, 6090.
  • [46] S. Bernhard, J.A. Barron, P.L. Houston, H.D. Abruna, J.L. Ruglovsky, X. Gao, G.G. Malliaras, J. Am. Chem. Soc., 2002, 124, 13624.
  • [47] P. Reveco, R.H. Schmehl, W.R. Cherry, F.R. Fronczek, J. Selbin, Inorg. Chem., 1985, 24, 4078.
  • [48] X. Gong, P.K. Ng, W.K. Chan, Adv. Mater., 1998, 10, 1337.
  • [49] P. Spellane, R.J. Watts, A. Vogler, Inorg. Chem., 1993, 32, 5633.
  • [50] G. Li, Q. Lin, L. Ji, H. Chao, J. Mater. Chem. B, 2014, 2, 7918.
  • [51] K.-W. K. Lo, C.-K. Chung, T. K.-M. Lee, L.-H. Lui, K. H.-K. Tsang, N. Zhu, Inorg. Chem., 2003, 42, 6886.
  • [52] K. K.-W. Lo, D. Ch.-M. Ng, Ch.-K. Chung, Organometallics, 2001, 20, 4999.
  • [53] K. K.-W. Lo, A. H.-H. Leung, Sci. China: Chem., 2010, 53, 2091.
  • [54] W. H.-T. Law, L. C.-C. Lee, M.-W. Louie, H.-W. Liu, T. W.-H. Ang, K. K.-W. Lo, Inorg. Chem., 2013, 52, 13029.
  • [55] T. Hu, L. He, L. Duan, Y. Qiu, J. Mater. Chem., 2012, 22, 4206.
  • [56] F. Dumur, D. Bertin, D. Gigmes, Int. J. Nanotechnol., 2012, 9, 377.
  • [57] J. Wu, F. Li, Q. Zeng, C. Nie, P. C. Ooi, T. Guo, G. Shan, Z. Su, Org. Electron., 2016, 28, 314.
  • [58] J.D. Slinker, A.A. Gorodetsky, M.S. Lowry, J. Wang, S. Parker, R. Rohl, S. Bernhard, G.G. Malliaras, J. Am. Chem. Soc., 2004, 126, 2763.
  • [59] H. Tang, Y. Li, Q. Chen, B. Chen, Q. Qiao, W. Yang, H. Wu, Y. Cao, Dyes Pigm., 2014, 100, 79.
  • [60] F. Dumur, G. Nasr, G. Wantz, C. R. Mayer, E. Dumas, A. Guerlin, F. Miomandre, G. Clavier, D. Bertin, D. Gigmes, Org. Electron., 2011, 12, 1683.
  • [61] C. Wu, H.-F. Chen, K.-T. Wong, M. E. Thompson, J. Am. Chem. Soc., 2010, 132, 3133.
  • [62] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P.E. Burrows, S.R. Forrest, M.E. Thompson, J. Am. Chem. Soc., 2001, 123, 4304.
  • [63] A.B. Tamayo, B.D. Alleyne, P.I. Djurovich, S. Lamansky, I. Tsyba, N.N. Ho, R. Bau, M.E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377.
  • [64] P.J. Hay, J. Phys. Chem. A, 2002, 106, 1634.
  • [65] D.-F. Huang, T.J. Chow, C.-Y. Wu, S.-S. Sun, S.-H. Tsai, Y.-S. Wen, S. Polosan, T. Tsuboi, J. Chin. Chem. Soc., 2008, 55,439.
  • [66] C. Yi, C.-J. Yang, J. Liu, M. Xu, J.-H. Wang, Q.-Y. Cao, X.-C. Gao, Inorg. Chim. Acta, 2007, 360, 3493.
  • [67] A.F. Rausch, M.E. Thompson, H. Yersin, Inorg. Chem., 2009, 48, 1928.
  • [68] Y.K. Radwan, A. Maity, T.S. Teets, Inorg. Chem., 2015, 54, 7122.
  • [69] R.A. Maya, A. Maity, T.S. Teets, Organometallics, 2016, 35, 2890.
  • [70] C. Adachi, R.C. Kwong, P. Djurovich, V. Adamovich, M.A. Baldo, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
  • [71] E. Baranoff, B.F.E. Curchod, Dalton Trans., 2015, 44, 8318.
  • [72] J. Frey, B.F.E. Curchod, R. Scopelliti, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, E. Baranoff, Dalton Trans., 2014, 43, 5667.
  • [73] I. Grzelak, B. Orwat, I. Kownacki, M. Hoffmann, J. Mol. Model., 2019, 25, 154.
  • [74] C. Zhou, Y. Shi, X. Ding, M. Li, J. Luo, Z. Lu, D. Xiao, Anal. Chem., 2013, 85, 1171.
  • [75] K. Teegardin, J.I. Day, J. Chan, J. Weaver, Org. Process Res. Dev., 2016, 20, 1156.
  • [76] Z.A. Page, B. Narupai, C.W. Pester, R. Bou Zerdan, A. Sokolov, D.S. Laitar, S. Mukhopadhyay, S. Sprague, A.J. McGrath, J.W. Kramer, P. Trefonas, C.J. Hawker, ACS Cent. Sci., 2017, 3, 654.
  • [77] J. Han, K.-M. Tang, S.-C. Cheng, C.-O. Ng, Y.-K. Chun, S.-L. Chan, S.-M. Yiu, M.-K. Tse, V. A. L. Roy, C.-C. Ko, Inorg. Chem. Front., 2020, 7, 786.
  • [78] C. Li, H. Wang, J. Shen, B. Tang, Anal. Chem., 2015, 87, 4283.
  • [79] J.-H. Zhu, B.-Z. Tang, K. K.-W. Lo, Chem. - Eur. J., 2019, 25, 10633.
  • [80] M. Velusamy, K.R.J. Thomas, C.-H. Chen, J.T. Lin, J.Y.S. Wen, W.-T. Hsieh, C.-H. Lai, P.-T. Chou, Dalton Trans., 2007, 3025.
  • [81] A.S. Ionkin, W.J. Marshall, D.C. Roe, Y. Wang, Dalton Trans., 2006, 2468.
  • [82] C.-H. Yang, K.-H. Fang, W.-L. Su, S.-P. Wang, S.-K. Su, I.-W. Sun, J. Organomet. Chem., 2006, 691, 2767.
  • [83] F.-M. Hwang, H.-Y. Chen, P.-S. Chen, C.-S. Liu, Y. Chi, C.-F. Shu, F.-I. Wu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Inorg. Chem., 2005, 44, 1344.
  • [84] S. Sprouse, K.A. King, P.J. Spellane, R.J. Watts, J. Am. Chem. Soc., 1984, 106, 6647.
  • [85] S. Soman, G.S. Bindra, A. Paul, R. Groarke, J.C. Manton, F.M. Connaughton, M. Schulz, D. Dini, C. Long, M.T. Pryce, J.G. Vos, Dalton Trans., 2012, 41, 12678.
  • [86] L. Mosca, R.S. Khnayzer, M.S. Lazorski, E.O. Danilov, F.N. Castellano, P. Anzenbacher Jr., Chem.: Eur. J., 2015, 21, 4056.
  • [87] R.V. Kiran, C.F. Hogan, B.D. James, D.V.D. Wilson, Eur. J. Inorg. Chem., 2011, 2011, 4816.
  • [88] D. Ramlot, M. Rebarz, L. Volker, M. Ovaere, D. Beljonne, W. Dehaen, L.V. Meervelt, C. Moucheron, A.K.D. Mesmaeker, Eur. J. Inorg. Chem. 2013, 2013, 2031.
  • [89] I.R. Laskar, S.-F. Hsu, T.-M. Chen, Polyhedron, 2006, 25, 1167.
  • [90] Y.-T. Huang, T.-H. Chuang, Y.-L. Shu, Y.-C. Kuo, P.-L. Wu, C.-H. Yang, I-W. Sun, Organometallics, 2005, 24, 6230.
  • [91] T.M. Monos, A.C. Sun, R.C. McAtee, J.J. Devery III, C.R.J. Stephenson, J. Org. Chem., 2016, 81, 6988.
  • [92] P. Alam, I.R. Laskar, C. Climent, D. Casanova, P. Alemany, M. Karanam, A.R. Choudhury, J. R. Butcher, Polyhedron, 2013, 53, 286.
  • [93] F. Scarpelli, A. Ionescu, L. Ricciardi, P. Plastina, I. Aiello, M. L. Deda, A. Crispini, M. Ghedini, N. Godbert, Dalton Trans., 2016, 45, 17264.
  • [94] C.A. Echeverry-Gonzalez, C.E. Puerto-Galvis, C.H. Borca, M.A. Mosquera, A.F. Luis-Robles, V.V. Kouznetsov, Org. Chem. Front., 2019, 6, 3374.
  • [95] B. Orwat, E. Witkowska, I. Kownacki, M.-J. Oh, M. Hoffmann, M. Kubicki, I. Grzelak, B. Marciniec, I. Głowacki, B. Łuszczyńska, G. Wiosna-Sałyga, J. Ułański, P. Ledwoń, M. Łapkowski, Dalton Trans. 2017, 426,9210.
  • [96] K.K.-W. Lo, D. Ch.-M. Ng, Ch.-K. Chung, Organometallics, 2001, 20, 4999.
  • [97] E.A. Plummer, A. van Dijken, J.W. Hofstraat, L. De Cola, K. Brunner, Adv. Funct. Mater., 2005, 15, 281.
  • [98] K.K.-W. Lo, J.S.-W. Chan, C.-K. Chung, V.W.-H. Tsang, N. Zhu, Inorg. Chim. Acta, 2004, 357, 3109.
  • [99] M.S. Lowry, W.R. Hudson, R.A. Pascal Jr., S. Bernhard, J. Am. Chem. Soc., 2004, 126, 14129.
  • [100] S. Salinas, M. A. Soto-Arriaza, B. Loeb, Polyhedron, 2011, 30, 2863.
  • [101] C. Dragonetti, A. Valore, A. Colombo, S. Righetto, V. Trifiletti, Inorg. Chim. Acta, 2012, 388, 163.
  • [102] K. Huang, I. W. Bulik, A. A. Marti, Chem. Commun., 2012, 48, 11760.
  • [103] K.-H. Leung, H.-Z. He, V. P.-Y. Ma, H.-J. Zhong, D. S.-H. Chan, J. Zhou, J.-L. Mergny, C.-H. Leung, D.-L. Ma, Chem. Commun., 2013, 49, 5630.
  • [104] D.-L. Ma, L.-J. Liu, K.-H. Leung, Y.-T. Chen, H.-J. Zhong, D. S.-H. Chan, H.-M. D. Wang, C.-H. Leung, Angew. Chem., Int. Ed., 2014, 53, 9178.
  • [105] H. Ahmad, A. Wragg, W. Cullen, C. Wombwell, A.J.H.M. Meijer, J.A. Thomas, Chem. — Eur. J., 2014, 20, 3089.
  • [106] Z. Wu, J. Mu, Q. Wang, X. Chen, L. Jensen, Ch. Yi, M.-J. Li, J. Organomet. Chem., 2015, 791, 175.
  • [107] Y. Ohsawa, S. Sprouse, K.A. King, M.K. De Armond, K.W. Hanck, R.J. Watts, J. Phys. Chem., 1987, 91, 1047.
  • [108] A. de la Hoz, Á. Diaz-Ortiz, A. Moreno, Chem. Soc. Rev., 2005, 34, 164.
  • [109] N. Yoshikawa, Y. Masuda, T. Matsumura-Inoue, Chem. Lett., 2000, 29, 1206.
  • [110] S.L. Van Atta, B.A. Duclos, D.B. Green, Organometallics, 2000, 19, 2397.
  • [111] B.I.K. Oxana, V. Kharissova, U.O. Mendez, Advances in Induction and Microwave Heating of Mineral and Organic Materials, InTech, 2011, p. 766.
  • [112] H. Phetmung, M. Wateh, C. Pakawatchai, Turk. J. Chem., 2012, 36, 556.
  • [113] J. Lhoste, N. Henry, T. Loiseau, F. Abraham, Inorg. Chem. Commun., 2011, 14, 1525.
  • [114] T. Abe, A. Miyazawa, Y. Kawanishi, H. Konno, Mini-Rev. Org. Chem., 2011, 8, 315.
  • [115] J.-R. Li, Z.-L. Xie, B. Hu, X.-Y. Huang, Inorg. Chem. Commun., 2011, 14, 265.
  • [116] E. Witkowska, G. Wiosna-Sałyga, I. Głowacki, В. Orwat, M.-J. Oh, I. Kownacki, M. Kubicki, В. Gierczyk, M. Dutkiewicz, P. Cieszko, В. Łuszczyńska, J. Ułański, I. Grzelak, M. Hoffmann, Р. Ledwoń, M. Łapkowski; J. Mater. Chem. С, 2018, 6, 8688.
  • [117] X. Shen, Y. Zhang, M. Xue, Q. Shen, Dalton Trans., 2012, 41, 3668.
  • [118] R. Dalpozzo, A. De Nino, M. Nardi, B. Russo, A. Procopio, Synthesis, 2006, 7, 1127.
  • [119] I. Glowacki, Z. Szamel, J. Phys. D: Appl. Phys., 2010, 43, 295101.
  • [120] E. Witkowska, B. Orwat, M.-J. Oh, G. Wiosna-Sałyga, I. Głowacki, I. Kownacki, K. Jankowska, M. Kubicki, B. Gierczyk, M. Dutkiewicz, I. Grzelak, M. Hoffmann, J. Nawrocik, G. Krajewski, J. Ułański, P. Ledwoń, M. Łapkowski, Inorg. Chem., 2019, 58, 15671.
  • [121] P.-N. Lai, C.H. Brysacz, M.K. Alam, N.A. Ayoub, T.G. Gray, J. Bao, T.S. Teets, J. Am. Chem. Soc., 2018, 140, 10198.
  • [122] B. Orwat, M.-J. Oh, M. Kubicki, I. Kownacki, Adv. Synth. Catal., 2018, 360, 3331.
  • [123] D. Buu-Hoi, C. R. Guettier, Hebd. Seances Acad. Sci., 1946, 222, 665.
  • [124] Y. Kitahara, M. Mochii, M. Mori, A. Kubo, Tetrahedron, 2003, 59, 2885.
  • [125] W.P. Utermohlen Jr., C.S. Hamilton, J. Am. Chem. Soc., 1941, 63, 156.
  • [126] W.E. Parham, D.C. Egberg, S. Salgar, J. Org. Chem., 1972, 37, 3248.
  • [127] C.J. Evoniuk, G. dos Passos Gomes, M. Ly, F.D. White, I.V. Alabugin, J. Org. Chem., 2017, 82, 4265.
  • [128] Y. Zhang, M. Wang, P. Li, L. Wang, Org. Lett., 2012, 14, 2206.
  • [129] Z. Zheng, G. Deng, Y. Liang, RSC Adv., 2016, 6, 103478.
  • [130] D.K. O’Dell, K.M. Nicholas, J. Org. Chem., 2003, 68, 6427.
  • [131] C.-Z. Luo, P. Gandeepan, Y.-C. Wu, W.-C. Chen, C.-H Cheng, RSC Adv., 2015, 5, 106012.
  • [132] H. Lee, C.S. Yi, Organometallics, 2016, 35, 1973.
  • [133] A.I. Tochilkin, I.R. Kovel'man, E.P. Prokofev, I. N. Gracheva, M. V. Levinskii, Chem. Heterocycl. Compd., 1988, 24, 892.
  • [134] Y. Furusho, A. Tsunoda, T. Aida, J. Chem. Soc. Perkin Trans., 1996, 1, 183.
  • [135] P. Dash, M. Janni, S. Peruncheralathan, Eur. J. Org. Chem. 2012, 2012(26), 4914.
  • [136] J. Huang, Y. Chen, J. Chan, M.L. Ronk, R.D. Larsen, M.M. Faul, Synlett, 2011, 10, 1419.
  • [137] Y. Liu, S. Zhang, Synlett 2011, 2, 268.
  • [138] E. Sperotto, J.G. de Vries, G.P.M. van Klink, G. van Koten, Tetrahedron Lett., 2007, 48, 7366.
  • [139] J. Ju, R. Hua, J. Su, Tetrahedron, 2012, 68, 9364.
  • [140] H. Xua, C. Wolf, Chem. Commun., 2009, 3035.
  • [141] A. Nobutaka, U. Masatsugu, U. S. Patent Application US2016/190487 A1 2016.
  • [142] N. Xia, M. Taillefer, Angew. Chem. Int. Ed., 2009, 48, 337.
  • [143] [143] J. P. Wolfe, J. Ahman, J.P. Sadighi, R.A. Singer, S.L. Buchwald, Tetrahedron Lett., 1997, 38, 6367.
  • [144] G.A. Grasa, M.S. Viciu, J. Huang, S.P. Nolan, J. Org. Chem., 2001, 66, 7729.
  • [145] X. Huang, S.L. Buchwald, Org. Lett., 2001, 3, 3417.
  • [146] D.-Y. Lee, J.F. Hartwig, Org. Lett., 2005, 7, 1169.
  • [147] S. Bhagwanth, A.G. Waterson, G.M. Adjabeng, K.R. Hornberger, J. Org. Chem., 2009, 74, 4634.
  • [148] R.A. Green, J.F. Hartwig, Org. Lett., 2014, 16, 4388.
  • [149] P.L. Pickard, T.L. Tolbert, J. Org. Chem., 1961, 26, 4886.
  • [150] K.K. Laali, V.J. Gettwert, J. Fluorine Chem., 2001, 107, 31.
  • [151] R.M. Adhikari, D.C. Neckers, B.K. Shah, J. Org. Chem., 2009, 74, 3341.
  • [152] G. Schansker, S.Z. Tóth, L. Kovács, A.R. Holzwarth, G. Garab, Biochim. Biophys. Acta, 2011, 1807, 1032.
  • [153] J.-Y. Shen, X.-L. Yang, T.-H. Huang, J. T. Lin, T.-H. Ke, L.-Y. Chen, C.-C. Wu, M.-C. P. Yeh, Adv. Funct. Mater. 2007, 17, 983.
  • [154] K. Nozaki, K. Takahashi, K. Nakano, T. Hiyama, H.-Z. Tang, M. Fujiki, S. Yamaguchi, K. Tamao, Angew. Chem. Int. Ed., 2003, 42, 2051.
  • [155] G. Cheng, N.R. Vautravers, R.E. Morrisa, D.J. Cole-Hamilton, Org. Biomol. Chem., 2008, 6, 4662.
  • [156] B. Marciniec, J. Guliński, W. Urbaniak, Z.W. Kometka, Comprehensive Handbook on Hydrosilylation 1st ed. (Ed.: B. Marciniec), Pergamon Press, Oxford, 1992.
  • [157] B. Orwat, M.-J. Oh, M. Zaranek, M. Kubicki, R. Januszewski, I. Kownacki, Inorg. Chem., 2020, 59, 9163.
  • [158] W. Tejchman, B. Orwat, I. Korona-Głowniak, A. Barabasz, I. Kownacki, G. Latacz, J. Handzlik, E. Żesławska, A. Malm, RSC Adv., 2019, 9, 39367.
  • [159] E. Baranoff, B.F.E. Curchod, J. Frey, R. Scopelliti, F. Kessler, I. Tavernelli, U. Rothlisberger, M. Grätzel, M.K. Nazeeruddin, Inorg. Chem. 2012, 51, 215.
  • [160] C. Hierlinger, A.K. Pal, F. Stella, T. Lebl, D.B. Cordes, A.M. Z. Slawin, D. Jacquemin, V. Guerchais, E. Zysman-Colman, Inorg. Chem., 2018, 57, 2023.
  • [161] C. Hierlinger, D.B. Cordes, A.M.Z. Slawin, D. Jacquemin, V. Guerchais, E. Zysman-Colman. Dalton Trans., 2018, 47, 10569.
  • [162] Y.-H. Song, Y.-C. Chiu, Y. Chi, Y.-M. Cheng, C.-H. Lai, P.-T. Chou, K.-T. Wong, M.-H. Tsai, C.-C. Wu, Chem. Eur. J., 2008, 14, 5423.
  • [163] C.-F. Chang, Y.-M. Cheng, Y. Chi, Y.-C. Chiu, C.-C. Lin, G.-H. Lee, P.-T. Chou, C.-C. Chen, C.-H. Chang, C.-C. Wu, Angew. Chem. Int. Ed., 2008, 47, 4542.
  • [164] M.S. Lowry, W.R. Hudson, R.A. Pascal, S. Bernhard, J. Am. Chem. Soc., 2004, 126, 14129.
  • [165] F.O. Garces, K.A. King, R.J. Watts, Inorg. Chem., 1988, 27, 3464.
  • [166] C. Li, M. Yu, Y. Sun, Y. Wu, C. Huang, F. Li, J. Am. Chem. Soc., 2011, 133, 11231.
  • [167] G.A. Carlson, P.I. Djurovich, R.J. Watts, Inorg. Chem., 1993, 32, 4483.
  • [168] B. Schmid, F.O. Garces, R.J. Watts, Inorg. Chem., 1994, 33, 9.
  • [169] P.-L. T. Boudreault, M.A. Esteruelas, E. Mora, E. Oñate, J.-Y. Tsai, Organometallics, 2018, 37, 3770.
  • [170] D.-L. Ma, W.-L. Wong, W.-H. Chung, F.-Y. Chan, P.-K. So, T.-S. Lai, Z.-Y. Zhou, Y.-C. Leung, K.-Y. Wong, Angew. Chem. Int. Edit., 2008, 47, 3735.
  • [171] B.A. Thompson, J. Am. Soc. Mass. Spectrom., 1997, 8, 1053.
  • [172] M.A. Henderson, S. Kwok, J.S. McIndoe, J. Am. Soc. Mass. Spectrom., 2009, 20, 658.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b9f49c5-9708-496b-8f9a-13f8fd75c767
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.