Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effect of rotating magnetic field on the heat transfer process in a magnetically assisted bioreactor was studied experimentally. Experimental investigations are provided for the explanation of the influence of the rotating magnetic field on natural convection. The heat transfer coefficients and the Nusselt numbers were determined as a function of the product of Grashof and Prandtl dimensionless numbers. Moreover, the comparison of the thermal performance between the tested set-up and a vertical cylinder was carried out. The relative enhancement of heat transfer was characterized by the rate of the relative heat transfer intensification. The study showed that along with the intensity of the magnetic field the heat transfer increased.
Czasopismo
Rocznik
Tom
Strony
293--–304
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Alméras E., Plais C., Euzenat F., Risso F., Roig V., Augier F., 2016. Scalar mixing in bubbly flows: Experimental investigation and diffusivity modelling. Chem. Eng. Sci., 140, 114–122. DOI: 10.1016/j.ces.2015.10.010.
- 2. Al-Najem M., Khanafer M.K., El-Refaee M.M., 1998. Numerical study of laminar natural convection in titled enclosure with transverse magnetic field. Int. J. Numer. Methods Heat Fluid Flow, 8, 651–672. DOI: 10.1108/096155 39810226094.
- 3. Al-Zamily A.M.J., 2014. Effect of magnetic field on natural convection in a nanofluid-filled semi-circular enclosure with heat flux source. Comput. Fluids, 103, 71–85. DOI: 10.1016/j.compfluid.2014.07.013.
- 4. Aminfar H., Mohammadpourfard M., Maroofiazar R., 2014. Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus. Exp. Therm Fluid Sci., 58, 156–169. DOI: 10.1016/ j.expthermflusci.2014.06.023.
- 5. Anton-Leberre V., Haanappel E., Marsaud N., Trouilh L., Benbadis L., Boucherie H., Massou S., Franc˛ois J.M., 2010.ExposuretohighstaticofpulsedmagneticfieldsdoesnotaffectcellularprocessesintheyeastSaccharomyces cerevisiae. Bioelectromagnetics 31, 28–38. DOI: 10.1002/bem.20523.
- 6. Ceylan S., Friese C., Lammel Ch., Mazac K., Kirschning A., 2008. Inductive heating for organic synthesis by using functionalizedmagneticnanoparticles insidemicroreactors.Angew.Chem. Int. Ed.,47, 8950–8953. DOI:10.1002/ anie.200801474.
- 7. Choonia H.S., Lele S.S., 2013. Kinetic modeling and implementation of superior process strategies for B-galactosidase production during submerged fermentation in a stirred tank bioreactor. Biochem. Eng. J., 77, 49–57. DOI: 10.1016/j.bej.2013.04.021.
- 8. Fijałkowski K, Żywicka A., Drozd R., Niemczyk A., Junka A. F., Peitler D., Kordas M., Konopacki M., Szymczyk P., El Fray M., Rakoczy R., 2015. Modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohydr. Polym., 133, 52–60. DOI: 10.1016/j.carbpol.2015.07.011.
- 9. Fijałkowski K., Rakoczy R., Żywicka A., Drozd R., Zielińska B., Wenelska K., Cendrowski K., Peitler D., Kordas M., Konopacki M., Mijowska E., 2016. Time dependent influence of rotating magnetic field on bacterial cellulose. Int. J. Polym. Sci., 2016, 1–13. DOI: 10.1155/2016/7536397.
- 10. Goharkhah M., Salarian A., Ashjaee M., Shahabadi M., 2015. Convective heat transfer characteristic of magnetite nanofluid under the influence of constant and alternating magnetic field. Powder Technol., 274, 258–267. DOI: 10.1016/j.powtec.2015.01.031.
- 11. Hamood-ur-Rehman M., Dahman Y., Ein-Mozaffari F., 2012. Investigation of mixing characteristics in a packedbed external loop airlift bioreactor using tomography images. Chem. Eng. J., 213, 50–61. DOI: 10.1016/j.cej. 2012.09.106.
- 12. Hobler T., 1986. Ruch ciepła i wymienniki. Wydawnictwo Naukowo-Techniczne, Warszawa.
- 13. Hristov J., Perez V. H., 2011. Critical analysis of data concerning Saccharomyces cerevisiae free-cell proliferations and fermentations assisted by magnetic and electromagnetic fields. Int. Rev. Chem. Eng., 3, 3–20.
- 14. Kabeel A.E., El-Said E.M.S., Dafea S.A., 2015. A review of magnetic field effects on flow and heat transfer in liquids: Present status and future potential for studies and applications. Renewable Sustainable Energy Rev., 45, 830–837. DOI: 10.1016/j.rser.2015.02.029.
- 15. Kothandaraman C.P., 2006. Fundamental of heat and mass transfer. New Age International (P) Ldt, New Delhi.
- 16. Lo D.C., 2010. High-resolution simulations of magnetohydrodynamic free convection in an enclosure with a transverse magnetic field using a velocity-vorticity formulation. Int. Commun. Heat Mass Transfer, 37, 514–523. DOI: 10.1016/j.icheatmasstransfer.2009.12.013.
- 17. Mehedintu M., Berg H., 1997. Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochem. Bioenerg., 43, 67–70. DOI: 10.1016/S0302-4598(96)05184-7.
- 18. Micheli L., Reddy K.S., Mallick T.K., 2016. Thermal effectiveness and mass usage of horizontal micro-fins under natural convection. Appl. Therm. Eng., 97, 39–47. DOI: 10.1016/j.applthermaleng.2015.09.042.
- 19. Nakaharai H., Takeuchi J., Yokomine T., Kunugi T., Satake S., Morley N.B., 2007. The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid. Exp. Therm Fluid Sci., 32, 23–28. DOI: 10.1016/ j.expthermflusci.2007.01.001.
- 20. Nemati H., Farhadi M., Sedighi K., Ashorynejad H.R., Fattahi E., 2012. Magnetic field effects on natural convection flow of nanofluid in a rectangular cavity using the Lattice Boltzmann model. Scientia Iranica, 19, 303–310. DOI: 10.1016/j.scient.2012.02.016.
- 21. Oztop H.F., Oztop M., Varol Y., 2009. Numerical simulation of magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square enclosure. Commun. Nonlinear Sci. Numer. Simul., 14, 770–778. DOI: 10.1016/ j.cnsns.2007.11.005.
- 22. Piratheepan M., Anderson T.N., 2015. Natural convection heat transfer in fac˛ade integrated solar concentrators. Sol. Energy, 122, 271–276. DOI: 10.1016/j.solener.2015.09.008.
- 23. Pirmohammadi M., Ghassemi M., Sheikhzadeh G.A., 2009. Effect of a magnetic field on buoyancy-driven convection in differentially heated square cavity. IEEE Trans. Magn., 45, 407–411. DOI: 10.1109/ELT.2008.85.
- 24. Rakoczy R., 2010a. Enhancement of solid dissolution process under the influence of rotating magnetic field. Chem. Eng. Process. Process Intensif., 49, 42–50. DOI: 10.1016/j.cep.2009.11.004.
- 25. Rakoczy R., 2010b. The application of the informational theory to the analysis of the grinding process under action of transverse rotating magnetic field. Powder Technol., 201, 161–170. DOI: 10.1016/j.powtec.2010.03.021.
- 26. Rakoczy R., 2012. Study of effect of temperature gradient on solid dissolution process under action of transverse rotating magnetic field. AICHE J., 58, 1030–1039. DOI: 10.1002/aic.12656.
- 27. Rakoczy R., Konopacki M., Fijałkowski K., 2016. The influence of a ferrofluid in the presence of an external rotating magnetic field on the growth rate and cell metabolic activity of a wine yeast strain. Biochem. Eng. J., 109, 43–50. DOI: 10.1016/j.bej.2016.01.002.
- 28. RakoczyR., Masiuk S., 2010. Influence of transverserotating magnetic field onthe enhancement of solid dissolution process. AIChE J., 56, 1416–1433. DOI: 10.1002/aic.12097.
- 29. Rakoczy R., Masiuk S., 2011. Studies of a mixing process induced by a transverse rotating magnetic field. Chem. Eng. Sci., 66, 2298–2308. DOI: 10.1016/j.ces.2011.02.021.
- 30. Rudraiah N., Barron R.M., Venkatachalappa M., Subbaraya C.K., 1995. Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci., 33, 1075–1084. DOI: 10.1016/0020-7225(94)00120-9.
- 31. Senapati J.R., Dash S.K., Roy S., 2016. Numerical investigation of natural convection heat transfer over annular finned horizontal cylinder. Int. J. Heat Mass Transfer, 96, 330–345. DOI: 10.1016/j.ijheatmasstransfer.2016. 01.024.
- 32. SerthR.W.,LestinaT.G.,2014. Processheat transfer.Principles,applications and rules ofthumb. 2nd ed. Academic Press, USA.
- 33. Spitler J.D., Javed S., Ramstad R.K., 2016. Natural convection in groundwater-filled boreholes used as ground heat exchangers. Appl. Energy, 164, 352–365. DOI: 10.1016/j.apenergy.2015.11.041.
- 34. Spitzer K.H., 1999. Application of rotating magnetic fields in Czochralski crystal growth. Prog. Cryst. Growth Charact. Mater., 38, 59–71. DOI: 10.1016/S0960-8974(99)00008-X.
- 35. Story G., Kordas M., Rakoczy R., 2016. Correlations for mixing energy in processes using Rushton turbine mixer. Chem. Pap. – Chem. Zvesti, 70, 747–756. DOI: 10.1515/chempap-2016-0008.
- 36. Zhang A., Tsang V.L., Korke-Kshirsagar R., Ryll T., 2014. Effects of pH probe lag on bioreactor mixing time estimation. Process Biochem., 49, 913–916. DOI: 10.1016/j.procbio.2014.03.005.
- 37. Zhang L., Zhang Y., Zhou Y., Su G.H., Tian W., Qiu S., 2016. COPRA experiments on natural convection heat transfer in a volumetrically heated slice pool with high Rayleigh numbers. Ann. Nucl. Energy, 87, 81–88. DOI: 10.1016/j.anucene.2015.08.021.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b9aae5d-756a-4003-b6ff-74203ade0432