PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boundary layer analysis in nanofluid flow past a permeable moving wedge in presence of magnetic field by using Falkner – skan model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, the effect of various dimensionless parameters on the momentum, thermal and concentration boundary layer are analyzed. In this respect we have considered the MHD boundary layer flow of heat and transfer over a porous wedge surface in a nanofluid. The governing partial differential equations are converted into ordinary differential equations by using the similarity transformation. These ordinary differential equations are numerically solved using fourth order Runge–Kutta method along with shooting technique. The present results have been shown in a graphical and also in tabular form. The results indicate that the momentum boundary layer thickness reduces with increasing values of the pressure gradient parameter β for different situations and also for the magnetic parameter M but increases for the velocity ratio parameter λ and permeability parameter K*. The heat transfer rate increases for the pressure gradient parameter β, velocity ratio parameter λ, Brownian motion parameter Nb and Prandtl number Pr but opposite result is found for the increasing values of the thermoporesis parameter Nt. The nanoparticle concentration rate increases with an increase in the pressure gradient parameter β, velocity ratio parameter λ, Brownian motion parameter Nb and Lewis number Le, but decreases for the thermoporesis parameter Nt. Finally, the numerical results has compared with previously published studies and found to be in good agreement. So the validity of our results is ensured.
Rocznik
Strony
1005--1013
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
  • Department of Mathematics Chittagong University of Engineering and Technology Chittagong-4349, BANGLADESH
autor
  • Department of Mathematics Dhaka University of Engineering and Technology Dhaka-1000, BANGLADESH
Bibliografia
  • [1] Seddeek M.A., Afify A.A. and Al-Hanaya A.M. (2009): Similarity Solutions for a Steady MHD Falkner-Skan flow and heat transfer over a wedge considering the effects of variable viscosity and thermal conductivity. – Applications and Applied Mathematics, vol.4, pp.303-313.
  • [2] Michael M.J. and Boyd D.I. (2010): Falkner-Skan flow over a wedge with slip boundary conditions. – Journal of Thermo Physics and Heat Transfer, vol.24, pp.263-270.
  • [3] Yacob A.N., Ishak A. and Pop I. (2011): Falkner-Skan problem for a static or moving wedge in nanofluids. – International Journal of Thermal Science, vol.50, pp.133-139.
  • [4] Hayat T., Majid H., Nadeem S. Meslou (2011): Falkner-Skan wedge flow of a power-law fluid with mixed convection and porous medium. – Computers and Fluids, vol.49, pp.22-28.
  • [5] Ashwini G. and Eswara A.T. (2015): Unsteady MHD accelerating flow past a wedge with thermal radiation and internal heat generation/absorption. – International Journal of Mathematics and Computational Science, vol.1, pp.13-26.
  • [6] Buongiorno J. (2006): Convective transport in nanofluids. – Journal of Heat Transfer, vol.128, pp.240-250.
  • [7] Nield D.A. and Kuznetsov A.V. (2009): The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. – International Journal of Heat Mass Transfer, vol.52, pp.5792-5795.
  • [8] Kuznetsov A.V. and Nield D.A. (2010): Natural convective boundary layer flow of a nanofluid past a vertical plate. – International Journal of Thermal Science, vol.49, pp.243-247.
  • [9] Ali M., Alam M.S. and Alim M.A. (2016): Numerical analysis of MHD free convection boundary layer flow of heat and mass transfer in case of air and water. – Bangladesh Journal of Scientific and Industrial Research, vol.51, pp.139-146.
  • [10] Alam M.S., Ali M., Alim M.A. and Rahman K.A. (2016): MHD boundary layer flow of micro polar fluid of heat and mass transfer with constant heat flux. – International Journal of Mechanical Engineering and Automation, vol.3, pp.208-215.
  • [11] Ali M., Alam M.S., Chowdhury M.Z.U. and Alim M.A. (2016): MHD boundary layer flow of heat and mass transfer over a stretching sheet in a rotating system with Hall current. – Journal of Scientific Research, vol.8, pp.119-128.
  • [12] Alim M.A., Alam M.S. and Chowdhury M.Z.U. (2016): Heat and mass transfer analysis of unsteady magnetohydrodynamic (MHD) boundary layer flow with chemical reaction. – International Journal of Mechanical Engineering and Automation, vol.3, pp.144-150.
  • [13] Alam M.S., Ali M. and Alim M.A. (2016): Study the effect of chemical reaction and magnetic field on free convection boundary layer flow of heat and mass transfer with variable Prandtl number. – Journal of Scientific Research, vol.8, pp.41-48.
  • [14] Alam M.S., Islam M.R., Ali M., Alim M.A. and Alam M.M. (2015): Magneto hydrodynamic boundary layer flow of non-Newtonian fluid and combined heat and mass transfer about an inclined stretching sheet. – Open Journal of Applied Science, vol.5, pp.279-294.
  • [15] Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet. – International Journal of Heat Mass Transfer, vol.53, pp.2477-2483.
  • [16] Makinde O.D. and Aziz A. (2011): Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. – International Journal of Thermal Science, vol.50, pp.1326-1332.
  • [17] Mutuku-Njane W.N. and Makinde O.D. (2014): MHD nanofluid flow over a permeable vertical plate with convective heating. – Journal of Computational and Theoretical Nano Science, vol.11, pp.667-675.
  • [18] Kandasamy R., Loganathan P. and Puvi Arasu P. (2011): Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection. – Nuclear Engineering and Design, vol.241, pp.2053-2059.
  • [19] Mustafa M., Hayat T., Pop I., Asghar S. and Obaidat S. (2011): Stagnation-point flow of a nanofluid towards a stretching sheet. – International Journal of Heat Mass Transfer, vol.54, pp.5588-5594.
  • [20] Rana P. and Bhargava R. (2012): Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. – Communications in Nonlinear Science and Numerical Simulation, vol.17, pp.212-226.
  • [21] Makinde O.D., Khan W.A. and Khan Z.H. (2013): Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. – International Journal of Heat Mass Transfer, vol.62, pp.526-533.
  • [22] Buongiorno J. (2006): Convective transport in nanofluids. – ASME Journal of Heat Transfer, vol.128, pp.240-250.
  • [23] Rajagopal K.R., Gupta A.S. and Na T.Y. (1983): A note on the Falkner-Skan flows of a non-Newtonian fluid. – International Journal of Non Linear Mechanics, vol.18, pp.313-320.
  • [24] White F.M. (1991): Viscous Fluid Flow. – 2nd edn. McGraw-Hill, New York: USA.
  • [25] Mohammadi F., Hosseini M.M., Dehgahn A. and Maalek Ghaini F.M. (2012): Numerical solutions of Falkner-Skan equation with heat transfer. – Studies in Nonlinear Science, vol.3, pp.86-93.
  • [26] Khan W.A. and Pop I. (2013): Boundary layer flow past a wedge moving in a nanofluid. – Mathematical Problem and Engineering, vol.1.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b944115-d9b0-48a1-bded-1bdb8e03011e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.