Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this study, ceramic TiO2 thin films were prepared on glass substrates using sol-gel and spin-coating methods from the TNBT/ AcOH/ EtOH/ H2O solution. The obtained coatings were subjected to drying at room temperature and were then calcined in the air at different temperatures in a range of 400–600°C in order to obtain clean TiO2 layers. The surface morphology and chemical composition were characterized with the use of a scanning electron microscope (SEM) and an energy dispersive spectrometer (EDX). Research has shown the presence of elements in the TiO2 and the influence of temperatures on layer thickness. Analysis of optical properties and energy gap width of the prepared coatings was determined by means of spectra analysis of absorbance as a function of radiation energy obtained with the use of the UV-VIS spectrophotometer. The obtained spectra of the layers are characterized by a shift of absorption lines towards the visible light wavelengths and the obtained values of band gaps decrease as the calcination temperature rises. The obtained and developed results of TiO2 thin films testify to the wide application possibilities of the layers in elements which use photocatalytic processes such as self-cleaning surfaces, solar cells, pollution removing membranes and optoelectronic components.
Rocznik
Tom
Strony
151--156
Opis fizyczny
Bibliogr. 39 poz., rys., wykr., tab.
Twórcy
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice
- Center for Nanotechnology, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice
Bibliografia
- [1] Y. Zare, “The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology”, Composites Part A: Applied Science and Manufacturing 91, (2016).
- [2] G.C. Pizarro, O.G. Marambio, M. Jeria-Orell, D.P. Oyarzún, and K.E. Geckler, “Size, morphology and optical properties of ZnO nanoparticles prepared under the influence of honeycomb-porous poly[(2-hydroxyethylmethacrylate)m-block poly(N-phenyl maleimide)n] copolymer films”, Materials & Design 111, (2016).
- [3] G. An, W. Ma, Z. Sun, Z. Liu, and B. Han, “Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation”, Carbon 45 (9), (2007).
- [4] T. Tański, W. Matysiak, and Ł. Krzemiński, “Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers”, Materials and Manufacturing Processes 32 (11), (2016).
- [5] W. Matysiak, T. Tański, and M. Zaborowska, “Analysis of the optical properties of PVP/ZnO composite nanofibers”, Advanced Structured Materials 33 (43), 2016.
- [6] Ch. Wang, Ch. Shao, L. Wang, and L. Zhang, “Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers”, Journal of Colloid and Interface Science 333 (1), 2009.
- [7] J. Singh, M.S.L. Hudson, S.K. Pandey, R.S. Tiwari, and O.N. Srivastava, “Structural and hydrogeneration studies of ZnO and Mg doped nanowires”, Internation Journal of Hydrogen Energy 37 (4), 2012.
- [8] C.-H. Kwak, Y.-B. Lee, S.-Y. Seo, S.-H. Kim, and C.-I. Park, “Structural and electrical properties of nitrogen-ion implanted ZnO nanorods”, Current Applied Physics 11 (3), 2011.
- [9] H.-Y. Chen and H.-H Chen, “Preparation of p-type CuCo2O4 thin films by sol-gel processing”, Materials Letters 188, 2017.
- [10] B. Hu, E. Jia, B.Du, and Y. Yin, “A new sol-gel route to prepare dense Al2O3 thin films”, Ceramics International 42 (15), 2016.
- [11] J.-Y. Chena, H.-C. Chena, J.-N Lin, and C. Kuo, “Effects of polymer media on electrospun mesoporous titania nanofibers” Materials Chemistry and Physics 107 (2‒3), 2008.
- [12] W.-J. Wu, W.-L. He, H.-Y. Yu, H.-X. Huang, and M. Chen, “Synthesis and photopsyhical properties of pyerene-functionalized nano-SiO2 hybrids in solutions and doped-PMMA thin films”, Material Chemistry and Physics 186, 2017.
- [13] Z. Zhang, X. Song, Y. Chen, J. She, and S. Deng, “Controllable preparation of I-D and dendritic ZnO nanowires and their large area field-emission properties”, Journal of Alloys and Compounds 690, 2017.
- [14] D. Xu, Y. Hai, X. Zhang, S. Zhang, and R. He, “Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2”, Applied Surface Science, 2016.
- [15] M. Mazur, J. Domaradzki, and D. Wojcieszak, “Optical and electrical properties of (Ti-V)Ox thin film as Transparent Oxide Semiconductor”, Bull. Pol. Ac.: Tech. 57 (2), (2009).
- [16] J. Kowalski, H. Szymanowski, A. Sobczyk-Guzenda, and M. Gazicki-Lipman, “A stack multilayer high reflectance optical filter produced on polyester substrate with the PECVD technique”, Bull. Pol. Ac.: Tech. 57 (2), (2009).
- [17] A. J. Haider, R. Hassan AL-Anbari, G. Rasim Kadhim, and C. Touma Salame, “Exploring potential environmental applications of TiO2 nanoparticles”, Energy Procedia 119, 2017.
- [18] Hosseini, K.Ç. Içli, M. Özenbaş, and Ç. Erçelebi, “Fabrication and characterization of spin-coated TiO2 film”, Energy Procedia 60, 2014.
- [19] Y.Y. Liu, L.Q. Qian, C. Guo, X. Jia, and J.W. Wang, “Natural superhydrophilic TiO2/SiO2 composite thin films deposited by radio frequency magnetron sputtering”, Journal of Alloys and Compounds 479 (1‒2), 2009.
- [20] P. Zhang, J. Tian, R. Xu, and G. Ma, “Hydrophilicity, photocatalytic activity and stability of tetrathyl orthosilicate modified TiO2 film on glazed ceramic surface”, Applied Surface Science 266, 2013.
- [21] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports 48, 53‒228 (2008).
- [22] C.H. Kwon, J.H. Kim, I.S. Jung, H. Shin, and K.H. Yoon, “Preparation and characterization of TiO2-SiO2 nano-composite thin films”, Ceramics International 29 (8), 2003.
- [23] T. Amna, M.S. Hassan, W.-S. Shin, H. VanBa, and H.-K. Lee, “TiO2 nanorods via one-step electrospinning technique: A novel nanomatrix for mouse myoblasts adhesion and propagation”, Colloid and Surfaces B: Biointerfaces 101, 2013.
- [24] M. Momeni, H. Saghafian, F. Golestani-Fard, N.Barati, and A.Khanahmadi, “Effect of SiO2 addition on photocatalytic activity, water contactangle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method”, Applied Surface Science 392, 2017.
- [25] Y. Situ, T. Huang, Y. Chen, W. Huang, and H. Huang, “Polymerization-induced phase separation in the preparation of macroporous TiO2/SiO2 thin films”, Ceramics International 40 (1), part A, (2014).
- [26] Y. Yao, N. Zhao, J.-J. Feng, and M.-M. Yao, “Photocatalytic activities of ce or Co doped nanocrystalline TiO2-SiO2 composite films”, Ceramics International 39 (4), (2013).
- [27] S. Wang, G. Xia, H. He, K. Yi, J. Shao, and Z. Fan, “Structural and optical properties of nanostructured TiO2 thin films fabricated by glancing angle deposition”, Journal of Alloys and Compounds 431 (1‒2), 2007.
- [28] H.Y. Ha, S.W. Nam, T.H. Lim, I.-H. Oh, and S.-A. Hong, “Properties of the TiO2 membranes prepared by CVD of titanium tetraisopropoxide”, Journal of Membrane Sciences 111 (1), 1996.
- [29] T. Huang, W. Huang, C. Zhou, Y. Situ, and H. Huang. “Superhydrophilicty of TiO2/SiO2 thin films: synergistic efect of SiO2 and phase-separation-induced porous structure”, Surface and Coatings Technology 213, (2012).
- [30] Ü.Ö.A. Arıer, “Optical and structural properties of sol-gel derived brookite TiO2-SiO2 nano-composite films with different SiO2:TiO2 ratios”, Optik – International Journal for Light and Electron Optics 127 (16), 2016.
- [31] M. Yazıcıa, O. Çomaklı, T. Yetim, A.F. Yetim, and A. Çelik, “Effect of sol aging time on the wear properties of TiO2-SiO2 composite films prepared by a sol-gel method”, Tribology International 104, 2016.
- [32] O. Çomaklı, T. Yetim, and A. Çelik, “The effect of calcination temperatures on wear properties of TiO2 coated Cp-Ti”, Surface and Coating Technology 246, 2014.
- [33] T. Tański and W. Matysiak, “Optical properties of PVP/ZnO composite thin films”, Journal of Achievments in Materials and Manufacturing Enginerring 82(1), 2017.
- [34] T. Tański, W. Matysiak, and B. Hajduk, “Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles”, Beilstein Journal of Nanotechnology 7, 1141‒1155.
- [35] D.J. Kim, S.H. Hahn, S.H Oh, and E.J. Kim, “Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol-gel dip coating”, Materials Letters 57 (2), 355‒360 (2002).
- [36] W. Matysiak, T. Tański, P. Jarka, P. Snopiński, and Ł. Krzemiński, “Wpływ stężenia masowego nanocząstek ZnO na własności optyczne cienkich warstw kompozytowych PVP/ZnO”, Inter-TechDoc, 2016.
- [37] M.I. Khan, K.A. Bhatti, R. Qindeel, and H.S. Althobaiti, “Structural, electrical and optical properties of miltilayer TiO2 thin films deposited by sol-gel spin coating”, Results in Physics, 2017.
- [38] G. Kenanakis, D. Bemardou, A. Dalamagkas, and N. Katsarakis, “Photocatalytic and electrooxidation properties of TiO2 thin films deposited by sol-gel”, Catalysis Today 240, part A, 146‒152 (2015).
- [39] R. Mechiakha, N.B. Sedrine, J.B. Naceur, and R. Chtouru, “Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol-gel dip-coating”, Surface and Coatings Technology 206 (2‒3), 243‒249 (2011).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b942df3-7140-4074-a713-48a02f13810e