
1. Introduction

The task of cartography is to present an image 
of the Earth or its part on a map at an appro-
priate scale. In 1866, Emil von Sydow dis-
tinguished three problems to be solved in 
creating a map called “reefs of cartography” 
(Sydow, 1866). They are: mapping the refer-
ence surface, generalisation and visualisation 
of the three-dimensional reality on a plane. The 
generalisation stage, so far, has been carried 
out mainly with the help of the cartographer’s 
knowledge and skills. In (Barańska et al., 2021), 
the authors presented a method of fully auto-
matic generalisation of the geometry of objects 
on a map, at any scale. The development of 
methods of generalising (simplifying) the geo-

metry of object features in digital cartography 
consists in improving the existing algorithms, 
without their validation in terms of the similarity 
of the geometry of features before and after 
the process (Salishchev, 2003), (Chrobak, 2010), 
(Chrobak et al., 2017), (Chrobak et al., 2019), 
(Courtial et al., 2020), (Kronenfeld et al., 2020) 
(Barańska et al., 2021). Until now, generalisa-
tion involved the use of approximate methods 
based on fractals, artificial intelligence and their 
evaluation with the method of least squares. 
Their main disadvantage is the ambiguity of 
the results. The authors of the automatic solution 
used an exact method. Its basis is the theory 
of contractive self-mapping (Barańska et al., 
2021). It takes into account the requirements 
of the generalisation process, i.e. reduction at 
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scales s < 1. Geodetic data (points of cartogra-
phic control base) generalised in this method 
belong to the metric space. This ensures their 
continuity and unambiguity. The distances 
between points describing the geometry of the 
object are defined in the process. This makes 
it possible to clearly determine in the mapping 
the recognisability of the object at a given scale. 
Moreover, in contractive mapping, the trans-
formation of an ordered polyline maintains the 
requirements of the binary tree system in the 
created triangles, which allows for preserving 
the Lipschitz contraction condition in the process 
(Barańska et al., 2021). The created triangles 
are unambiguously verified by recognition 
norms, defined by K. Salishchev (2003).

The developed generalisation algorithm 
evaluates the obtained results, i.e. a feature 
necessary for its use in automatic generalisa-
tion. Preparation for automatic data generali-
sation requires fully defined standards and 
unique and verifiable algorithms for particular 
groups of features. This in turn makes it possible 
to use these databases to draw objects directly 
on maps. As a result, the data collected in the 
database and their unique generalisation at 
various scales lead to standardisation of sets. 

The article proposes a solution based on 
self-regulation of contraction (contractor for 
scale s = 1), which meets the requirements of 
Banach’s fixed-point theorem (Barańska et al., 
2021). The method of generalising object geo-
metry features at scales s < 1 uses contraction, 
thanks to which in contractive self-mapping 
created for source data it constitutes one 
standard mapping to be used for generalising 
the geometry of an object at any scales s <1. 
The article is intended for researchers working 
on the theory of cartography and algorithms 
for objective automatic simplification of object 
geometry. 

2. Objective digital generalisation  
of an ordered polyline Lu at scales 0 < s < 1 

Generalisation of the geometry of an ordered 
polyline (Lu) at scales 0 < s < 1 is a contractive 
self-mapping with an objectively justified unique 
result This increases the degree of reliability of 
the result and eliminates iteration, which signi-
ficantly reduces the costs of the generalisation 
process. 

Contractive mapping involves base triangles 
(BT) formed on the existing points of the carto-
graphic network as well as the beginning and 
end cartographic control points of the object. 
The task of triangles BT is to link the cartogra-
phic control of the object in the mapping to 
the existing cartographic network, which in the 
processes of harmonisation and interoperability 
of obtaining information reduces their costs 
(Directive, 2007). It would be advisable for the 
existing meta-data of the object in the geodetic 
and cartographic data centres to be supple-
mented with a cartographic control network 
(Krzywicka-Blum, 2017).

On the points of the cartographic network of 
base triangles BT, contraction triangles (CT) of 
polyline Lu are created, which are the matrix 
for its generalisations. Triangles CT preserve 
the necessary contraction condition in con-
tractive mapping of a polyline. Their bases are 
greater than their heights, which was proved in 
the work (Barańska et al., 2021). The set of 
triangles CT of polyline Lu for s = 1 is the standard 
of contractive self-mapping and generalisations 
for the scale 0<s<1. The result of the self-map-
ping of the data of the polyline is verified by the 
source data of the ordered polyline Lu as pre-
sented in the paper (Barańska et al., 2021). 
Triangles CT are formed on the legs of trian-
gles BT. The number of triangles BT and CT 
depends on the degree of compilation of the geo-
metry of the polyline and its length, following 
the rule “from the general to the specific”. The 
process of creating a CT is as follows: on the 
vertices of a polyline, triangles are created in 
the binary tree system. In the sections of the 
generalised polyline Lu its point function is 
regular except for some areas where the so-
-called singular points have been identified 
(Barańska et al., 2021). The lengths of bases 
and heights of the triangles are verified by the 
K. Salishchev norm (Salishchev, 2003). After 
the generalisation of the polyline Lu with con-
tractive mapping, the lengths of the sides and 
heights of triangles CT are compared with the 
K. Salishchev norm.

3. Implementation of the polyline  
generalisation algorithm

The polyline generalisation algorithm is im-
plemented in several stages (fig. 1). The first two 
stages concern the preparation and ordering 
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of the polyline. An open polyline, consisting of 
n-vertices, is defined by X, Y planar coordinates 
of the vertices in a given planar coordinate sys-
tem. Among the vertices, fixed vertices should 
be distinguished, which cannot be removed 
from the polyline, e.g. as a result simplifying it, 
and singular vertices. Fixed vertices are carto-
graphic control points, e.g. both ends of the 
polyline, and other vertices which are cartogra-
phic control points (and form a base triangle BT). 
In order to distinguish the vertices of a polyline, 
each vertex, apart from its coordinates, should be 
assigned an identifier (IDW) with the following 
values: IDW = 0 − any vertex; IDW = 1 − vertex 
of the cartographic control base; IDW = 2 − sin-
gular vertex. 

Singular vertices are searched for among 
vertices with the identifier IDW = 0. For this pur-
pose, triangles CT are sequentially created 
from the following vertices of the polyline: Wi, 
Wi + 1 and Wi + 2; the created triangles have the 

base pi, i + 2 = WiWi + 2 and legs pi, i + 1 = WiWi + 1, 
pi + 1, i + 2 = Wi + 1Wi + 2. In these triangles, the fol-
lowing are calculated: height hi + 1 of the vertex 
Wi + 1 above the base pi, i + 2. A vertex is singular 
if it meets the condition: hi + 1 ≥ pi, i + 2 (Barańska 
et al., 2021). The singular vertex is assigned 
an identifier IDW = 2. After identifying singular 
vertices, the polyline takes the form of an ordered 
polyline Lu. 

3.1. Creating triangles in the binary tree 
structure 

The binary tree of a polyline is a structure 
of interconnected and branching contraction 
triangles CT formed from the vertices of poly-
line Lu. This tree is created according to the 
principle “from the general to the particular”. 
The initial branches of the tree are polyline 
sections delimited by fixed vertices IDw = 1. 
For a given section, the length of the triangle 

Fig. 1. Stages of polyline generalisation
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base included between the vertices which are 
limits of the section is calculated. A given sec-
tion of the polyline is divided into successive 
branches (segments) if it consists of more than 
two vertices. A section consisting of only two 
vertices: the beginning and the end vertex 
(i.e. the side of the original polyline) should be 
understood as a triangle with a vertex with 
“zero height”. For all vertices of a given section, 
their heights above the base are calculated, 
and then the vertex with the greatest height is 
selected. The vertex with the greatest height 
and the base form a triangle of the polyline. 
The vertex with the greatest height divides the 
given polyline section into two consecutive 
branches (sections). The branching process is 
then repeated on each newly created branch 
of the tree. As a result, we obtain a binary tree 
of triangles, the end branches of which are 
triangles of “zero height”, constituting any sides 
WiWi + 1 of the original polyline. Figure 2a shows 
an example of polyline W1W10W20, with the 
vertices of the cartographic control base: W1, 
W20 (the ends of the polyline) and W10. Table 1 
shows the X, Y coordinates of all vertices of 
the polyline with their IDW identifiers. 

Two singular vertices were identified in this 
polyline: W4 and W18. The ordered polyline is 
shown in figure 2a. Figure 3 shows the structure 
of the binary tree of triangles for this ordered 
polyline Lu. Each block of the structure consti-
tutes a branch of the tree, i.e. a triangle with 
the given base WiWj and its length (p). The 
description of the triangle in a given block of 
the structure is completed by the vertex (Wh) 
with the greatest height (hW) above the base 

(fig. 3). The last branches of the tree are the 
sides (WiWi+1), or “zero-height triangles” (h = 0.0).

The formation of the structure of a binary tree 
of triangles begins in the sections between the 
vertices of the cartographic control base (fig. 3). 
For example, for the section W1-W10 of the po-
lyline, the vertex W5 was selected because 
its height above the base p1-10=W1W10 is the 
greatest and amounts to 18.0 (fig. 3). Due to 
the selection of the vertex W5, the legs W1W5 
and W5W10 of the triangle W1W5W10 constitute 
successive branches (sections) of the polyline. 
On the first of them (W1W5), a triangle W1W4W5 
with the highest vertex W4 (h4 = 33.5) and 

Tab. 1. Coordinates of the vertices of polyline 
W1W10W20 with singular vertices W4 and W18

NW X Y IDW NW X Y IDW

1 0.0 0.0 1 11 85.1 101.8 0

2 15.5 4.1 0 12 78.0 111.9 0

3 23.5 16.1 0 13 65.0 110.1 0

4 30.0 50.0 2 14 59.0 124.8 0

5 49.1 21.8 0 15 46.1 121.2 0

6 55.2 39.5 0 16 39.9 131.9 0

7 64.8 48.1 0 17 30.5 131.2 0

8 71.6 70.1 0 18 20.0 100.0 2

9 84.2 76.8 0 19 13.9 129.0 0

10 98.8 93.8 1 20 0.0 135.0 1

Fig. 2. Ordered polyline Lu with cartographic control points W1, W10, W20: a) base triangle BT (blue)  
and identified singular vertices W4 and W18 (green); b) polyline, simplified to a scale of 1:20,000 (red)
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a triangle W4W5 with “zero height” (h = 0.0) 
were built. The process of creating successive 
triangles as legs of the binary tree is carried 
out until “zero-height” triangles appear. For the 
triangle W1W2W3, the last branches W1W2 
and W2W3 are examples of such triangles with 
“zero height”.

The shaded blocks in the structure of the 
binary tree of the polyline are the sides of the 
polyline, included between its consecutive 
vertices (fig. 3).

3.2. Simplifying the polyline to a selected 
scale

The process of simplifying the polyline, 
i.e. changing its shape, results from the need 
to present the polyline at a smaller scale. The 
simplification consists in rejecting the sides or 
fragments of the polyline without detriment to 
the recognisability of its shape. The rejection 
of a given side or fragment is determined by 
the value of the length recognition coefficient 
(frd) resulting from the K. Salishchev’s norm (1). 

frd = 0.7M                        (1)

where: M − denominator of the scale of reduction
For an ordered polyline, this norm can be 

implemented by controlling the length of the 
legs of triangles CT (Barańska et al., 2021). 
For presenting the polyline at a 2 times smaller 

scale, e.g. from scale 1:10,000 to scale 1:20,000, 
the coefficient frd = 14.0 is applied. This coef-
ficient means that the sides of triangles CT 
shorter than frd may be omitted in the presen-
tation of the simplified polyline. The simplifica-
tion of triangles is implemented in the structure 
of the binary tree. In the ordered polyline Lu, 
the lengths of the legs of successive triangles 
CT are verified, starting from the end branches 
of the tree. If a given leg is shorter than frd, 
then this leg and its branches are omitted in 
the presentation of the simplified polyline. Only 
those triangles whose both legs are longer than 
frd remain in the simplified polyline. Figure 4 
shows the process of simplifying the ordered 
polyline Lu (with singular vertices W4 and W18) 
to scale 1:20,000. The simplification is presented 
on the structure of the binary tree of this polyline, 
with appropriately marked removed and re-
maining triangles of the tree (fig. 4). For example, 
in the triangle W5W6W7 with the base W5W7 
and the vertex W6, the leg W5W6 (p = 18.7) is 
longer than frd = 14.0, but the leg W6W7 is 
shorter, because it is 12.9 (fig. 4). Thus, the 
triangle W5W6W7 is rejected. The same is true 
for the triangle W10W15W16. The leg W15W16 
(p = 12.4) is shorter than frd = 14.0, hence the 
entire triangle W10W15W16 is rejected. It is worth 
noting that due to the rejection of the leg W10W15, 
the branch based on this side is rejected, i.e. the 
triangles W10W13W14, W10W12W13, etc. 

Fig. 3. Structure of the binary tree of an ordered polyline Lu 
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As a consequence of simplifying the polyline 
to scale 1:20,000, the ordered polyline Lu was 
reduced to the form: W1W2W3W4W5W7W8W9 
W10W16W18W20 (fig. 4). Its shape is shown in 
figure 2b. Simplification of the polyline resulted 
in the removal of 7 vertices: W6, W11, W12, W13, 

W14, W15, W17, W19. The simplification of the 
polyline in any other scale will have a similar 
course. For example, at a scale of 1:50,000, 
where frd = 35.0, the simplified polyline will 
consist of only 7 vertices: W1W5W8W10W16 
W18W20 (fig. 5)

Fig. 4. Structure of the binary tree of ordered polyline Lu after simplification from scale 1:10,000  
to scale 1:20,000 (in brown − triangles that do not meet the frd condition; crossed out − triangles rejected  

as a result of simplification; shaded blocks − the polyline remaining after simplification)

Fig. 5. Structure of the binary tree of ordered polyline Lu after simplification from scale 1:10,000  
to scale 1:50,000 (in brown − triangles that do not meet the frd condition; crossed out − triangles rejected  

as a result of simplification; shaded blocks − the polyline remaining after simplification)
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4. Verification of the measures of the 
generalised polyline Lu with contractive 
mapping to triangles CT according  
to the metric of K. Salishchev

The verification consists in comparing the 
source data vertices with the sum of the vertices 
remaining after the simplification process and 
the rejected vertices. Table 2 shows the number 
of vertices before and after the simplification 
process. 

The result (number of vertices) obtained for 
the subsequent scales (tab. 2) in contractive 
self-mapping of polyline Lu is identical and fulfils 
the Banach theorem concerning the existence 
of one solution of generalised polyline in each 
scale s < 1. 

4.1. Calculation of standard deviation

The standard deviation for polyline Lu deter-
mined after its self-mapping at scale s = 1 is 
the standard for its simplifications at any scale 
s < 1. And the result after simplifying the poly-
line at a given scale is verified by the K. Salish-
chev norm applied to the bases and heights 
of triangles created through the mapping. As 
a result of polyline generalisation with contrac-
tive self-mapping to the selected scale, some 
of its vertices (and thus sides) are rejected. 
Figure 6 shows a fragment of polyline W1-
-Wi - n, in which, due to generalisation, the ver-
tices Wi + 1 and Wi + 2, were rejected, leaving 
the vertices Wi and Wi + 3. The remaining verti-
ces form a new side of the polyline Wi-Wi + 3.

For all vertices of the source polyline, their 
heights (hi) in relation to the sides created after 
the generalisation were calculated. The heights 

of the rejected vertices of the polyline will be 
greater than zero, and the heights of the re-
maining vertices will be zero. These heights 
are used to calculate standard deviation (δh), 
which describes the discrepancy between the 
generalised polyline and the original polyline, 
according to the equation (2): 

n

h
n

i
i

h

∑
== 1δ                           (2)

where: n − number of vertices of the original 
polyline.

4.2. Examining the recognisability  
of geometry of the generalised polyline 
according to K. Salishchev’s metric

The equation (2) does not take into account 
the geometry of the vertices of base triangles 
BT, as the recognisability evaluation concerns 
the change of the scale of the generalised 

Tab. 2. Verification of contractive mapping  
on the basis of the number of vertices of a generalised 
ordered polyline Lu

Generalization 
to 1:M scale

The number of vertices  
of ordered polyline Lu

original after  
simplification rejected

1:20,000 20 13 7

1:50,000 20 7 13

1:75,000 20 4 16

Fig. 6. Fragment of the original and generalised polyline (solid black line − polyline after generalisation;  
dashed grey line − rejected sides of the original polyline)
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polyline according to the K. Salishchev metric. 
The evaluation at a scale of simplified geometry 
of the polyline, made on the basis of the sum 
of its sequences in appropriate intervals, is 
carried out after the simplification process. The 
evaluation of the simplified polyline depends on 
the sum of the heights of the rejected vertices 
in the intervals. This is due to the fact that the 
data of the source polyline belong to the metric 
space of the polyline Lu, as demonstrated in 
the work (Barańska et al., 2021). The cartogra-
phic control points and the singular points of 
the polyline have an impact on the evaluation 
of contractive mapping if they are not excluded 
from the generalisation process. Their exclu-
sion would result in failure to meet the Lipschitz 
condition (Barańska et al., 2021). Retaining 

these points (tab. 3 items 1, 2, 3, 4, 5, 7, 13, 
14, 16, 17, 18, 21, 24, 25, 27, 29, 31) allows for 
an automatic generalisation process. This leads 
to a single and objective result of the general-
ised polyline, verified by K. Salishchev metric, 
because:

− polyline data belong to the metric space,
− contractive self-mapping with the use of 

the binary tree system fulfils the Lipschitz con-
dition and the Banach theorem,

− the result of contractive mapping of the po-
lyline meets the recognition metric of K. Sali-
shchev. 

Cartographic control points (W1,W10,W20 - 
bold numbers) and singular points (W4,W18 - 
shaded numbers) (tab. 3: items 1, 2, 3, 4, 5, 7, 
8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 

Tab. 3. Verifying the K. Salishchev metric in the process of generalisation of the ordered polyline Lu  
with the use of contractive self-mapping (for scale 1:10,000, frd = 4.0)

Polyline fragment 1 - 10 Polyline fragment 10 - 20

No.

Triangles CT

No.

Triangles CT

base height
Points

base height
Points

singular cartographic 
control singular cartographic 

control

1 1-10 18.0 0 2 14 10 - 20 24.6 0 2

2 1-5 33.5 0 1 15 10 - 18 33.4; hs=0 1 1

3 5-10 8.9 0 1 16 18 - 20 9.1; hs=0 1 1

4 1-4 11.9; hs=0 1 1 17 10 - 16 5.6 0 1

5 4-5 0.0; hs=0 1 0 18 16 - 18 7.6; hs=0 1 0

6 5-8 3.1 0 0 19 18 - 19 0.0; hs=0 1 0

7 8-10 3.2 0 1 20 19 - 20 0.0 0 1

8 1-3 5.4 0 1 21 10 - 15 9.1 0 1

9 3-4 0.0; hs=0 1 0 22 15 - 16 0.0 0 0

10 5-7 3.8 0 0 23 16 - 17 0.0 0 0

11 7-8 0.0 0 0 24 17 - 18 0.0; hs=0 1 0

12 8-9 0.0 0 0 25 10 - 14 7.9 0 1

13 9-10 0.0 0 1 26 14 - 15 0.0 0 0

27 10 - 13 7.3 0 1

28 13 - 14 0.0 0 0

29 10 - 12 3.0 0 1

30 12 - 13 0.0 0 0

31 10 - 11 0.0 0 1

32 11 - 12 0.0 0 0
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27, 29, 31) do not preserve the measures of 
the K. Salishchev metric, which justifies their 
exclusion from the mapping. These results in-
dicate that cartographic control points should 
not participate in the evaluation of the gener-
alisation of the object. Their task is to orientate 
the geometry of the cartographic control base, 
not of the object. In contractive self-mapping, 
the sequence of points of the polyline fulfils the 
measures of the K. Salishchev metric (tab. 3, 
items 6, 7, 10). The exclusion of singular points 
and cartographic control points from contractive 
mapping is justified, as it makes it possible to 
verify the existence of one objective solution 
of the object geometry, fulfilling the Banach 
theorem, in contractive self-mapping.

5. Conclusion

The article is a response to the tasks set out 
in the INSPIRE Directive of 2007 (Directive, 
2007) and concerns spatial data in terms of 
the direct or indirect location of a geographical 
area and the needs of users. Particular atten-
tion in the article is drawn to the optimal use of 
data when employing computer software, as 
well as the accuracy of data processing. For 
this purpose, contractive mapping along with 
the principle of “from the general to the specific” 
were employed, as well as the Lipschitz condi-
tion for strengthening the continuity of a uniform 
function, and the Banach fixed-point theorem 
and a solution resulting in the maximum degree 
of reliability of the result. The article presents 
a solution to the problem of cartographic gen-
eralisation, which is one of the main problems 
of cartography to this day (Sydow, 1866). In 
a previously published article (Barańska et al., 
2021), which was the basis for the current 
work, the theoretical problem of generalisation 
was presented. This article describes an algo-
rithm that verifies the existence of an objective 

result of the data simplification process. Unlike 
many others, this algorithm does not rely on an 
iterative process. The presented algorithm is 
illustrated with an example of a polyline with 
vertices of the cartographic control base and 
singular vertices. The results obtained using 
the presented method of generalisation lead to 
the following conclusions: 

a) The polylines were examined using the 
example of first degree curves. The next stages 
of research should concern the algorithm of 
generalisation of curves of higher degrees for 
maps at scales 1:10,000 and smaller.

b) In contractive self-mapping of a polyline 
belonging to the metric space Lu, its single result 
verifies the fulfilment of the Banach theorem. 

c) The simplification of an ordered polyline 
Lu by contractive self-mapping to the scale s < 1 
has one objective solution. 

d) The result of the generalisation of polyline 
Lu also takes into account the heights of the 
triangles, which are compared with the recog-
nition norm of K. Salishchev. 

e) In the study of the geometry of the polyline 
after contractive self-mapping, full compatibility 
with the recognition norm of K. Salishchev was 
obtained.

f) Cartographic control points of the polyline 
change the orientation, not its geometry, in the 
process of its generalisation.

g) The process of polyline generalisation 
should be carried out separately from the trans-
formation between the coordinate systems, 
because transformation changes the angular-
-linear measures.
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