PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ensembles of instance selection methods: A comparative study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Instance selection is often performed as one of the preprocessing methods which, along with feature selection, allows a significant reduction in computational complexity and an increase in prediction accuracy. So far, only few authors have considered ensembles of instance selection methods, while the ensembles of final predictive models attract many researchers. To bridge that gap, in this paper we compare four ensembles adapted to instance selection: Bagging, Feature Bagging, AdaBoost and Additive Noise. The last one is introduced for the first time in this paper. The study is based on empirical comparison performed on 43 datasets and 9 base instance selection methods. The experiments are divided into three scenarios. In the first one, evaluated on a single dataset, we demonstrate the influence of the ensembles on the compression–accuracy relation, in the second scenario the goal is to achieve the highest prediction accuracy, and in the third one both accuracy and the level of dataset compression constitute a multi-objective criterion. The obtained results indicate that ensembles of instance selection improve the base instance selection algorithms except for unstable methods such as CNN and IB3, which is achieved at the expense of compression. In the comparison, Bagging and AdaBoost lead in most of the scenarios. In the experiments we evaluate three classifiers: 1NN, kNN and SVM. We also note a deterioration in prediction accuracy for robust classifiers (kNN and SVM) trained on data filtered by any instance selection methods (including the ensembles) when compared with the results obtained when the entire training set was used to train these classifiers.
Rocznik
Strony
151--168
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Department of Applied Informatics, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
Bibliografia
  • [1] Abdi, H. (2010). Holm’s sequential Bonferroni procedure, Encyclopedia of Research Design 1(8): 620–627.
  • [2] Aha, D., Kibler, D. and Albert, M. (1991). Instance-based learning algorithms, Machine Learning 6(1): 37–66.
  • [3] Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sanchez, L. and Herrera, F. (2011). Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework, Journal of Multiple-Valued Logic & Soft Computing 17: 255–287.
  • [4] Arnaiz-González, Á., Blachnik, M., Kordos, M. and García-Osorio, C. (2016a). Fusion of instance selection methods in regression tasks, Information Fusion 30: 69–79.
  • [5] Arnaiz-González, Á., Díez-Pastor, J., Rodríguez, J.J. And García-Osorio, C.I. (2016b). Instance selection for regression: Adapting DROP, Neurocomputing 201: 66–81.
  • [6] Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Machine Learning 36(1): 105–139.
  • [7] Bezdek, J.C., Ehrlich, R. and Full, W. (1984). FCM: The fuzzy C-means clustering algorithm, Computers & Geosciences 10(2–3): 191–203.
  • [8] Bhattacharya, B., Poulsen, R. and Toussaint, G. (1984). Application of proximity graphs to editing nearest neighbor decision rules, International Symposium on Information Theory, Santa Monica, CA, USA, pp. 97–108.
  • [9] Blachnik, M. (2014). Ensembles of instance selection methods based on feature subset, IEEE Procedia Computer Science 35: 388–396.
  • [10] Blachnik, M. and Kordos, M. (2014). Bagging of instance selection algorithms, International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, pp. 40–51.
  • [11] Brighton, H. and Mellish, C. (2002). Advances in instance selection for instance-based learning algorithms, Data Mining and Knowledge Discovery 6(2): 153–172.
  • [12] Czarnowski, I. and Jędrzejowicz, P. (2015). Ensemble online classifier based on the one-class base classifiers for mining data streams, Cybernetics and Systems 46(1–2): 51–68.
  • [13] Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm, International Conference on Machine Learning, Bari, Italy, pp. 148–156.
  • [14] Freund, Y. and Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences 55(1): 119–139.
  • [15] Galar, M., Fernández, A., Barrenechea, E., Bustince, H. And Herrera, F. (2011). An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes, Pattern Recognition 44(8): 1761–1776.
  • [16] García-Osorio, C., de Haro-García, A. and García-Pedraja, N. (2010). Democratic instance selection: A linear complexity instance selection algorithm based on classifier ensemble concepts, Artificial Intelligence 174(4–5): 410–441.
  • [17] García, S., Derrac, J., Cano, J.R. and Herrera, F. (2012). Prototype selection for nearest neighbor classification: Taxonomy and empirical study, IEEE Transactions on Pattern Analysis and Machine Intelligence 34(3): 417–435.
  • [18] García-Pedrajas, N. (2009). Constructing ensembles of classifiers by means of weighted instance selection, IEEE Transactions on Neural Networks 20(2): 258–277.
  • [19] García-Pedrajas, N. and De Haro-García, A. (2014). Boosting instance selection algorithms, Knowledge-Based Systems 67: 342–360.
  • [20] García, S., Luengo, J. and Herrera, F. (2016). Tutorial on practical tips of the most influential data preprocessing algorithms in data mining, Knowledge-Based Systems 98: 1–29.
  • [21] Grochowski, M. and Jankowski, N. (2004). Comparison of instance selection algorithms. II: Results and comments, Lecture Notes in Computer Science, Vol. 3070, pp. 580–585.
  • [22] Gunn, I.A., Arnaiz-González, Á. and Kuncheva, L.I. (2018). A taxonomic look at instance-based stream classifiers, Neurocomputing 286: 167–178.
  • [23] Hart, P. (1968). The condensed nearest neighbor rule, IEEE Transactions on Information Theory 14(3): 515–516.
  • [24] Herrera, F. (2005). Keel, knowledge extraction based on evolutionary learning, Spanish National Projects TIC2002-04036-C05, TIN2005-08386-C05 and TIN2008-06681-C06, http://www.keel.es.
  • [25] Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E. (1991). Adaptive mixtures of local experts, Neural Computation 3(1): 79–87.
  • [26] Jankowski, N. and Grochowski, M. (2004). Comparison of instance selection algorithms. I: Algorithms survey, International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, Vol. 3070, pp. 598–603.
  • [27] Kordos, M. and Blachnik, M. (2012). Instance selection with neural networks for regression problems, International Conference on Artificial Neural Networks, Lausanne, Switzerland, pp. 263–270.
  • [28] Kordos, M. and Rusiecki, A. (2016). Reducing noise impact on MLP training, Soft Computing 20(1): 49–65.
  • [29] Kuncheva, L. (2004). Combining Pattern Classifiers: Methods and Algorithms, Wiley, Hoboken, NJ.
  • [30] Kuncheva, L.I., Bezdek, J.C. and Duin, R.P. (2001). Decision templates for multiple classifier fusion: An experimental comparison, Pattern Recognition 34(2): 299–314.
  • [31] Marchiori, E. (2008). Hit miss networks with applications to instance selection, Journal of Machine Learning Research 9(Jun): 997–1017.
  • [32] Marchiori, E. (2010). Class conditional nearest neighbor for large margin instance selection, IEEE Transactions on Pattern Analysis and Machine Intelligence 32(2): 364–370.
  • [33] Raviv, Y. and Intrator, N. (1996). Bootstrapping with noise: An effective regularization technique, Connection Science 8(3–4): 355–372.
  • [34] Rokach, L. (2009). Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography, Computational Statistics & Data Analysis 53(12): 4046–4072.
  • [35] Schapire, R.E. (1990). The strength of weak learnability, Machine Learning 5(2): 197–227.
  • [36] Sebban, M., Nock, R. and Lallich, S. (2002). Stopping criterion for boosting-based data reduction techniques: From binary to multiclass problem, Journal of Machine Learning Research 3(Dec): 863–885.
  • [37] Shaker, A. and Hüllermeier, E. (2012). IBLStreams: A system for instance-based classification and regression on data streams, Evolving Systems 3(4): 235–249.
  • [38] Skurichina, M. and Duin, R.P. (2001). Bagging and the random subspace method for redundant feature spaces, International Workshop on Multiple Classifier Systems, Cagliari, Italy, pp. 1–10.
  • [39] Song, Y., Liang, J., Lu, J. and Zhao, X. (2017). An efficient instance selection algorithm for k nearest neighbor regression, Neurocomputing 251: 26–34.
  • [40] Tomek, I. (1976). An experiment with the edited nearest-neighbor rule, IEEE Transactions on Systems, Man, and Cybernetics 6: 448–452.
  • [41] Wilson, D. (1972). Asymptotic properties of nearest neighbor rules using edited data, IEEE Transactions Systems, Man and Cybernetics 2: 408–421.
  • [42] Wilson, D. and Martinez, T. (2000). Reduction techniques for instance-based learning algorithms, Machine Learning 38(3): 257–268.
  • [43] Wolpert, D.H. (1992). Stacked generalization, Neural Networks 5(2): 241–259.
  • [44] Woźniak, M., Graña, M. and Corchado, E. (2014). A survey of multiple classifier systems as hybrid systems, Information Fusion 16: 3–17.
  • [45] Zhu, J., Zou, H., Rosset, S. and Hastie, T. (2009). Multi-class AdaBoost, Statistics and Its Interface 2(3): 349–360.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b84fb4d-d862-4e64-a110-d75d26179c3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.