PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental determination of springback characteristics in a three-point bending test of the aluminium alloy sheet with aluminium cladding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The springback phenomenon that occurs during cold forming is the main problem that affects the dimensional accuracy of bent products. This article presents the results of the analysis of the springback phenomenon occurring during a three-point air bending of 0.5 mm, 0.8 mm, 1.0 mm and 2.0 mm thick AW-2024 aluminium alloy sheet, AW-1050A aluminium clad. For sheets with a thickness of 1.0 mm and 2.0 mm, the influence of heat treatment and natural ageing time of sheets on the value of the springback coefficient was also tested. The springback characteristics were determined by defining the dependence of the springback coefficient on the bending deflection of the band. The experimental results obtained indicate a linear dependence of the value of the springback coefficient on the relative deflection w/fg index (w – distance between supports, fg – deflection under load), both in the case of the influence of the sheet thickness and the ageing time of the sheets.
Rocznik
Strony
307--313
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, al. Powstańców Warszawy 12 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Himagireesh Ch, Ramji K, Durga Prasad KG, Hari Kiran V. Multi-criteria decision model for selection of a material suitable to lightning strike protection in aerospace applications. Materials Today Proc. 2022;59: 725-733.
  • 2. Polmear I. Light Alloy - From traditional Alloys to Nanocrystals. Butterworth-Heinemann: Oxford 2006.
  • 3. Davies G. Materials for Automobile Bodies. Butterworth-Heinemann: Oxford 2003.
  • 4. Atluri SN, Sampath SG, Tong P. Structural Integrity of Aging Air-planes. Springer Verlag: Berlin/Heidelberg 1991.
  • 5. Pantelakis SpG, Chamos AN, Setsika D. Tolerable corrosion damage on aircraft aluminium structures: Local cladding patterns. Theor. Appl. Fracture Mech. 2012;58:55-64.
  • 6. Zinonga T, Binga Z, Junb J, Zhiqianga L, Jianguob L. A study on the hot roll bonding of aluminium alloys. Procedia Manufacturing. 2020; 50:56-62.
  • 7. Kučera V, Vojtěch D. Influence of the Heat Treatment on Corrosion Behavior and Mechanical properties of the AA 7075 Alloy. Manufac-turing Technology. 2017;17:747-752.
  • 8. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A, et al. Recent development in aluminium alloys for the automotive in-dustry. Compos Sci. Technol. 2000;280:37-49.
  • 9. May A, Belouchrani MA, Taharboucht S,Boudras A. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated. Procedia Engineering. 2010; 2:1795-1804.
  • 10. Sun S, Fang Y, Zhang L, Li C, Hu S. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT. J. Mater. Res. Technol. 2020;9:3219-3229.
  • 11. ASM Handbook, Volume 4. Heat Treating ASM Handbook Commit-tee, p. 841-879. DOI: 10.1361/asmhba0001205
  • 12. Sobotka J, Solfronk P, Kolnerova M, Korecek D. Influence of techno-logical parameters on ageing of aluminium alloy AW-2024. Manufac-turing Technology. 2018;18:1023-1028.
  • 13. Fallah Tafti M, Sedighi M, Hashemi R. Effects of natural ageing treatment on mechanical, microstructural and forming properties of Al 2024 aluminum alloy sheets. Iranian J. Mater. Sci. Engng. 2018;15:1-10. doi: 10.22068/ijmse.15.4.1
  • 14. Kut S, Pasowicz G, Stachowicz F. The influence of natural aging of the AlCu4Mg1 aluminum sheet alloy on the constitutive parameters of selected models of flow stress. Adv. Sci. Technol. Res. J. 2022;16: 216-229. doi.org/10.12913/22998624/154792
  • 15. Kut S, Pasowicz G, Stachowicz F. On the springback and load in three-point air bending of the AW-2024 aluminium alloy sheet with AW-1050A aluminium cladding. Materials. 2023;16:2945. doi. 10.3390/ma16082945.
  • 16. Sharma PK, Gautam V, Agrawal AK. Analytical and numerical prediction of Springback of SS/Al-alloy cladded sheet in V-Bending. J. Manuf. Sci. Eng. 2021;143(3):031011.
  • 17. https://doi.org/10.1115/1.4048953
  • 18. Zhu YX, Liu YL, Yang H, Li HP. Development and application of the material constitutive model in springback prediction of cold bending. Materials Designe. 2012;42:245-258.
  • 19. Wu Z, Gong J, Chen Y, Wang J, Wei Y, Gao J. Springback prediction of dieless forming of AZM120 sheet metal based on constitutive model. Metals. 2020;10:780. doi:10.3390/met10060780.
  • 20. Vorkov V, Aerens R, Vandepitte D, Duflou JR. Springback prediction of high-strength steels in large radius air bending using finite element modeling approach. Procedia Eng. 2014;81:1005-1010. doi:10.1016/j.proeng.2014.10.132
  • 21. Lin J, Hou Y, Min J, Tang H, Carsley JE, Stoughton TB. Effect of constitutive model on springback prediction of MP980 and AA6022-T4. Int. J. Material Forming. 2020;13:1-13. doi.org/10.1007/s12289-018-01468-x
  • 22. Sharma PK, Gautam V, Agrawal AK. Experimental and numerical investigations of springback and residual stresses in bending of a three-ply clad sheet. Proc IMechE Part L: J. Materials: Design Appli-cations. 2021;235,2823-2838 https://doi.org/10.1177/14644207211037006
  • 23. Trzepieciński T, Lemu HG. Improving prediction of springback in sheet metal forming using multilayer perceptron-based genetic algo-rithm. Materials. 2020;13:3129. doi.org/10.3390/ma13143129.
  • 24. Yilamua K, Hino R, Hamasaki H, Yoshida F. Air bending and spring-back of stainless steel clad aluminium sheet. J. Mater. Proc. Technol. 2010;210:272-278. doi.org/10.1016/j.jmatprotec.2009.09.010.
  • 25. AMS2770. Heat Treatment of Wrought Aluminum Alloy Parts. Rev. 2015-09.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b84ddc2-70e7-4581-b813-2cae710fd4a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.