Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main purpose of the present work was to validate the numerical model for the pulse-step liquid steel alloying method using a physical simulator that enables the observation and recording of phenomena occurring during the continuous steel casting process. The facility under investigation was a single-nozzle tundish equipped with a dam. To physical trials the glass water model was made on a scale of 2:5. For the mathematical description of turbulence during liquid steel alloying process, the k-ε and k-ω models were employed in the simulations. Based on the computer simulations and physical trials carried out, alloy addition behaviour and mixing curves for different tundish alloy addition feeding positions were obtained. The change in the location of alloy addition feeding to the liquid steel had an effect on the process of alloy addition spread in the liquid steel bulk and on the mixing time.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2081--2087
Opis fizyczny
Bibliogr. 21 poz., fot., rys., wykr., wzory
Twórcy
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metals Extraction and Recirculation, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metals Extraction and Recirculation, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metals Extraction and Recirculation, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metals Extraction and Recirculation, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
- [1] P. D. Lee, P. E. Ramirez-Lopez, K. C. Mills, B. Santillana, Ironmak. Steelmak. 39, 244-253 (2012).
- [2] J. Falkus, K. Miłkowska-Piszczek, Mater. Technol. 49, 903-912 (2015).
- [3] L. Ren, L. Zhang, Q. Wang, Metall. Res. Technol. 115, 102 (2018).
- [4] M. M. Salazar-Campoy, R. D. Morales, A. Nájera-Bastida, I. Calderón-Ramos, V. Cedillo-Hernández, J. C. Delgado-Pureco, Metall. Mater. Trans. B 49, 812-830 (2018).
- [5] T. Merder, M. Warzecha, Metall. Mater. Trans. B 43, 856-868 (2012).
- [6] T. Merder, J. Pieprzyca, Steel Res. Int. 83, 1029-1038 (2012).
- [7] J. Falkus, J. Lamut, Arch. Metall. Mater. 50, 709-718 (2005).
- [8] C. Chen, L.T.I. Jonsson, A. Tilliander, G. Cheng, P. G. Jönsson, Metall. Mater. Trans. B 46, 169-190 (2015).
- [9] D. Chen, X. Xie, M. Long, M. Zhang, L. Zhang, Q. Liao, Metall. Mater. Trans. B 45, 392-398 (2014).
- [10] Q. Yue, C. B. Zhang, X. H. Pei, Ironmak. Steelmak. 44, 227-236 (2017).
- [11] K. Morales-Higa, R.I.L. Guthrie, M. Isac, R. D. Morales, Metall. Mater. Trans. B 44, 63-79 (2013).
- [12] A. Ramos-Banderas, R. D. Morales, L. García-Demedices, M. Díaz-Cruz, ISIJ Int. 43, 653-662 (2003).
- [13] S. Chatterjee, D. Li, K. Chattopadhyay, Metall. Mater. Trans. B 49, 756-766 (2018).
- [14] A. Mabentsela, G. Akdogan, S. Bradshaw, J. S. Afr. Inst. Min. Metall. 117, 469-483 (2017).
- [15] L. Zhang, Steel Res. Int. 76, 784-796 (2005).
- [16] M. Warzecha, T. Merder, P. Warzecha, G. Stradomski, ISIJ Int. 53, 1983-1992 (2013).
- [17] A. Cwudziński, Ironmak. Steelmak. 42, 373-381 (2015).
- [18] A. Cwudziński, Metall. Res. Technol. 112, 308 (2015).
- [19] A. Cwudziński, Steel Res. Int. 81, 123-131 (2010).
- [20] A. Cwudziński, Ironmak. Steelmak. 42, 132-138 (2015).
- [21] A. Cwudziński, Steel Res. Int. 85, 902-917 (2014).
Uwagi
EN
This scientific work has been financed from the resources of National Science Centre, Poland in the years 2017-2019 as Research Project No. 2016/23/B/ST8/01135
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b7f94f8-fdb9-4fac-b42e-dbf0ad79b4b1