PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of the temperature rises in multiple friction pendulum bearings by means of thermomechanical rheological elements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Even if the effectiveness of friction pendulum bearings has been extensively proven by means of numerous experimental programs carried out worldwide, many aspects concerning their behavior under seismic action still need to be clarified. One of these is related to the temperature rises induced by the heat generated by friction during the dynamic sliding of the surfaces in contact, which may significantly affect the superficial frictional properties of the sliding surfaces involved, thus reducing the overall performance of the isolating system, up to re-coupling the structure with the ground shaking, in a limit scenario. With the aim to contribute to a better understanding of this aspect, and to develop a simplified tool capable to reproduce the hysteretic force–displacement loops together with the corresponding temperature variations, a thermo-mechanical model for the multiple friction pendulum devices is proposed. The model is based on the combination of simple thermomechanical rheological elements and does not require the evaluation of any convolution integral arising from the solution of the heat conduction problem as it happens with many existing models. The model is numerically implemented under displacement-control and its effectiveness is validated through the numerical simulation of some recent experimental results that shows a good agreement with the observed behavior.
Rocznik
Strony
171--185
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Department of Structural Engineering and Geotechnics, Sapienza University of Rome, via A. Gramsci 53, 00197 Rome, Italy
  • Department of Structural Engineering and Geotechnics, Sapienza University of Rome, via A. Gramsci 53, 00197 Rome, Italy
  • Department of Structural Engineering and Geotechnics, Sapienza University of Rome, via A. Gramsci 53, 00197 Rome, Italy
  • Department of Structural Engineering and Geotechnics, Sapienza University of Rome, via A. Gramsci 53, 00197 Rome, Italy
Bibliografia
  • [1] J.M. Kelly, Earthquake-Resistant Design with Rubber, 2nd ed., Springer-Verlag, Berlin and New York, 1997.
  • [2] W. Taniwangsa, J.M. Kelly, Experimental and analytical studies of base isolation applications for low-cost housing, Technical report UCB/EERC-96/04, Berkeley, CA, 1996.
  • [3] V.A. Zayas, S.S. Low, S.A. Mahin, The FPS earthquake resisting system, Technical report UCB/EERC-87-01, Berkley, CA, 1987.
  • [4] D. Mellon, T. Post, Caltrans bridge research and applications of new technologies, in: Proceedings of U.S.-Italy Workshop on Seismic Protective Systems for Bridges, MCEER, Buffalo, NY, 1999.
  • [5] EPS, Earthquake Protection Systems Inc., Technical characteristics of friction pendulum bearings, Technical report, Vallejo, CA, 2003.
  • [6] C.S. Tsai, Y.C. Lin, H.C. Su, Characterization and modeling of multiple friction pendulum system with numerous sliping interfaces, Earthq. Eng. Struct. Dyn. 39 (13) (2010) 1463–1491.
  • [7] M.C. Constantinou, Friction Pendulum double concave bearing, Technical report NEES Buffalo, NY, 2004 http://nees.buffatlo.edu/docs/dec304/FP-DC%20Report-DEMO.pdf.
  • [8] D.M. Fenz, M.C. Constantinou, Behaviour of the double concave Friction Pendulum bearing, Earthq. Eng. Struct. Dyn. 35 (2006) 1403–1424.
  • [9] D.M. Fenz, M.C. Constantinou, Spherical sliding isolation bearings with adaptive behavior: experimental verification, Earthq. Eng. Struct. Dyn. 37 (2008) 185–205.
  • [10] S. Nagarajaiah, A.M. Reinhorn, M.C. Constantinou, Nonlinear dynamic analysis of 3D base isolated structures, ASCE J. Struct. Eng. 117 (7) (1991) 2035–2054.
  • [11] A. Mokha, M.C. Constantinou, A.M. Reinhorn, Experimental study and analytical prediction of earthquake response of sliding isolation system with spherical surface, Technical report NCEER-90-0020, Buffalo, NY, 1990.
  • [12] D.M. Fenz, M.C. Constantinou, Modelling triple friction pendulum bearings for response-history analysis, Earthq. Spectra 24 (4) (2008) 1011–1028.
  • [13] T.A. Morgan, S.A. Mahin, Achieving reliable seismic performance enhancement using multi-stage friction pendulum isolators, Earthq. Eng. Struct. Dyn. 39 (13) (2010) 1443–1461.
  • [14] A.A. Sarlis, P.C. Tsopelas, M.C. Constantinou, Element for triple friction pendulum isolator and verification examples, in: 3D-BASIS-ME-MB: Computer Program for Non-Linear Dynamic Analysis for Seismically Isolated Structures, University at Buffalo, NY, 2009.
  • [15] T.C. Becker, S.A. Mahin, Experimental and analytical study of the bi-directional behavior of the triple friction pendulum isolator, Earthq. Eng. Struct. Dyn. 41 (3) (2012) 355–373.
  • [16] T.C. Becker, S.A. Mahin, Correct treatment of rotation of sliding surfaces in a kinematic model of the triple friction pendulum bearing, Earthq. Eng. Struct. Dyn. 42 (2) (2012) 311–317.
  • [17] T. Ray, A.A. Sarlis, A.M. Reinhorn, M.C. Constantinou, Hysteretic models for sliding bearings with varying frictional force, Earthq. Eng. Struct. Dyn. 42 (15) (2013) 2341–2360.
  • [18] M.C. Constantinou, A.S. Whittaker, Y. Kalpakidis, D.M. Fenz, G.P. Warn, Performance of seismic isolation hardware under service and seismic loading, Technical report MCEER-07-0012, Buffalo, NY, 2007.
  • [19] A.A. Sarlis, M.A. Constantinou, Model of triple friction pendulum bearing for general geometric and frictional parameters and for uplift conditions, Technical report MCEER-13-0010, Buffalo, NY, 2013.
  • [20] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.
  • [21] D.M. Fenz, M.C. Constantinou, Spherical sliding isolation bearings with adaptive behavior: theory, Earthq. Eng. Struct. Dyn. 37 (2008) 163–183.
  • [22] D.M. Fenz, M.C. Constantinou, Development, implementation and verification of dynamic analysis models for multispherical sliding bearings, Technical report MCEER-08-0018, Buffalo, NY, 2008.
  • [23] J. Awrejcewicz, P. Olejnik, Analysis of dynamic systems with various friction laws, Appl. Mech. Rev. J. (ASME) 58 (2005).
  • [24] Z. Olesiak, Y. Pyryev, A. Yevtushenko, Determination of temperature and wear during braking, Wear (Elsevier) 210 (1997) 120–126.
  • [25] A.A. Yevtushenko, M. Kuciej, One-dimensional thermal problem of friction during braking: the history of development and actual state, Int. J. Heat Mass Transfer 55 (2012) 4148–4153.
  • [26] A. Mokha, M.C. Constantinuou, A.M. Reinhorn, Teflon bearings in aseismic base isolation: experimental studies and mathematical modeling, Technical report NCEER-88-0038, Buffalo, NY, 1988.
  • [27] M. Dolce, D. Cardone, F. Croatto, Frictional behavior of steel-PTFE interfaces for seismic isolation, Bull. Earthq. Eng. 3 (2005) 75–99.
  • [28] C.S. Tsai, T.C. Chiang, B.J. Chen, M.J. Chen, Component test of the full scale MFPS isolator, in: The 2004 ASME Pressure Vessels and Piping Conference, Seismic Engineering, San Diego, CA, USA, 25–29 July, (2004) 217–223.
  • [29] T.C. Chiang, Applications of multiple friction pendulum system in seismic engineering, (Doctoral Thesis), Feng Chia University, Taiwan, 2004.
  • [30] V. Quaglini, P. Dubini, C. Poggi, Experimental assessment of sliding materials for seismic isolation systems, Bull. Earthq. Eng. 10 (2012) 717–740.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b7f47ae-885b-46ee-a332-8179b6e8dffd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.