PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of electrophysical and structural properties of human cancellous bone and synthetic bone substitute material using impedance spectroscopy and X-ray powder diffraction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrophysical stimulation is used to support fracture healing and bone regeneration. For design optimization of electrostimulative implants, in combination with applied human donor bone or synthetic bone scaffolds, the knowledge of electrophysical properties is fundamental. Hence further investigations of the structural properties of native and synthetic bone is of high interest to improve biofunctionality of bone scaffolds and subsequent healing of the bone defect. The investigation of these properties was taken as an objective of this study. Therefore, surgically extracted fresh cylindrical and consecutively ashed cancellous bone samples from human osteoarthritic femoral heads were characterized and compared to synthetic bone substitute material. Thereby, impedance spectroscopy is used to determine the electrophysical properties and X-ray powder diffraction (XRD) for analysis of structural information of the bone samples. Conductivity and permittivity of fresh and ashed cancellous bone amounted to 1.710–2 S/m and 7.5106 and 210–5 S/m and 7.2103 , respectively. Electrical conductivity and dielectric permittivity of bone scaffold resulted in 1.710–7 S/m and 49. Analysis of the structural properties showed that the synthetic bone scaffolds made of Brushite exhibited some reflections which correspond to the native bone samples. The information in present study of the bone material (synthetic and autologous) could be used for later patient individual application of electrostimulative implants.
Rocznik
Strony
11--19
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • University Medicine Rostock, Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory Rostock, Germany
  • University of Rostock, Institute of Chemistry, Inorganic Solid State Chemistry Group, Rostock, Germany
autor
  • University of Rostock, Institute of Chemistry, Inorganic Solid State Chemistry Group, Rostock, Germany
  • University Medicine Rostock, Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory Rostock, Germany
autor
  • University Medicine Rostock, Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory Rostock, Germany
Bibliografia
  • [1] ANDREUCCETTI D., FOSSI R., PETRUCCI C., An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz, 1997, http://niremf.ifac.cnr.it/tissprop/;.
  • [2] ASAMI K., Characterization of heterogeneous systems by dielectric spectroscopy, Prog. Polym. Sci., 2002, 27(8), 1617–1659.
  • [3] BECKER C., BALTZER A.W., SCHNEPPENHEIM M., BECKER A., ASSHEUER J., MERK H.R., Experimentelle Validierung einer DXA- und MRT-basierten Knochendichtemessung durch Veraschung, Zentralblatt für Chirugie, 2001. 126, 402–406.
  • [4] BRAGG W.L., The Diffraction of Short Electromagnetic Waves by a Crystal, 17. Proceedings of the Cambridge Philosophical Society, 1913, 17, 43–57.
  • [5] CONESA J.A., FULLANA A., FONT R., Thermal decomposition of meat and bone meal, J. Anal. Appl. Pyrolysis, 2003, 70, 619–630.
  • [6] DOROZHKIN S.V., EPPLE M., Die biologische und medizinische Bedeutung von Calciumphospaten, Angew Chem., 2002, 114, 3260–3277.
  • [7] ELLENRIEDER M., TISCHER T., KREUZ P.C., FRÖHLICH S., FRITSCHE A., MITTELMEIER W., Arthroskopisch gestützte Behandlung der aseptischen Hüftkopfnekrose, Oper. Orthop. Traumatol., 2013, 25, 85–94.
  • [8] GABRIEL C., GABRIEL S., CORTHOUT E., The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., 1996, 41(11), 2231–49.
  • [9] GABRIEL S., LAU R.W., GABRIEL C., The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol., 1996, 41(11), 2251–69.
  • [10] GABRIEL S., LAU R.W., GABRIEL C., The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol., 1996, 41(11), 2271–93.
  • [11] HABA Y., SKRIPITZ R., LINDNER T., KÖCKERLING M., FRITSCHE A., MITTELMEIER W. et al., Bone mineral densities and mechanical properties of retrieved femoral bone samples in relation to bone mineral densities measured in the respective patients, Sci. World J., 2012, 2012, 242403, DOI: 10.1100/2012/242403. Epub 2012 Nov 27.
  • [12] HABA Y., BADER R., SOUFFRANT R., KLÜß D., KREUZ P., Vorrichtung zur elektrischen Impedanz-Analyse an schwer zugänglichen Orten, Offenlegungsschrift DE 10 2012 200 529 A1 2013.07.18, AZ: DE 102012200529.3: Germany, 2013.
  • [13] HABA Y., WURM A., KÖCKERLING M., MITTELMEIER W., BADER R., Characterization of human cancellous and subchondral bone with respect to electrophysical properties and bone mineral density by means of impedance spectroscopy, Med. Eng. Phys., 2017, 45, 34–41.
  • [14] HABA Y., LINDNER T., FRITSCHE A., SCHIEBENHOEFER A.-K., SOUFFRANT R., KLUESS D., SKRIPITZ R., MITTELMEIER W., BADER R., Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis, Open Orthop. J., 2012, 6, 458–463.
  • [15] HAENLE M., SCHLÜTER S., ELLENRIEDER M., MITTELMEIER W., BADER R., Treatment of acetabular defects during revision total hip arthroplasty – preliminary clinical and radiological outcome using bone substitute materials, Hip. Int., 2013, 23(1), 46–53.
  • [16] KRAUS W., Magnetfeldtherapie und magnetisch induzierte Elektrostimulation in der Orthopädie, Orthopäde, 1984, 13, 78–92.
  • [17] KREMER F., SCHÖNHALS A., Broadband Dielectric Spectroscopy, Springer Verlag, Berlin–Heidelberg–New York, 2003.
  • [18] LOONG C.-K., REY C., KUHN L.T., COMBES C., WU Y., CHEN S.-H. et al., Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study, Bone, 2000, 26(6), 599–602.
  • [19] LOZANO L.F., PEÑA-RICO M.A., HEREDIA A., OCOTLÁNFLORES J., GÓMEZ-CORTÉS A., VELÁZQUEZ R. et al., Thermal analysis study of human bone, J. Mater. Sci., 2003, 38(23), 4777–4782.
  • [20] MAXWELL J.C., A treatise on electricity and magnetism, Vol. 1, Clarendon Press, Oxford, 1873; Reprint: Dover Books on Physics, 1954.
  • [21] MAXWELL J.C., A treatise on electricity and magnetism, Vol. 2, Clarendon Press, Oxford, 1873; Reprint: Dover Books on Physics, 1954.
  • [22] MITTELMEIER W., LEHNER S., KRAUS W., MATTER H.P., GERDESMEYER L., STEINHAUSER E., BISS: Concept and biomechanical investigations of a new screw system for electromagnetically induced internal osteostimulation, Arch. Orthop. Trauma Surg., 2004, 124, 86–91.
  • [23] OTTER M.W., MCLEOD K.J., RUBIN C.T., Effekte elektromagnetischer Felder bei experimentellen Untersuchungen zur Frakturheilung, Clin. Orthop. Relat. R, 1998, 355S, 90–104.
  • [24] PASCHALIS E.P., BETTS F., DICARLO E., MENDELSOHN R., BOSKEY A.L., FTIR microspectroscopic analysis of normal human cortical and trabecular bone, Calcif Tissue Int., 1997, 61, 480–486.
  • [25] ROTT G.A., ZHANG F., HABA Y., KRÖGER W., BURKEL E., Dielectric properties of porous calcium titanate (CaTiO3), [in:] R. Narayan, A. Bandyopadhyay, S. Bose (Eds.), Bio-materials Science – Processing, Properties, and Applications, Vol. 228, John Wiley and Sons, 2011.
  • [26] SASTRY T.P., CHANDRSEKARAN A., SUNDARASEELAN J., RAMASASTRY M, SREEDHAR R., Comparative study of some physico-chemical characteristics of osteoporotic and normal human femur heads, Clin. Biochem., 2007, 40, 907–912.
  • [27] SU Y., SOUFFRANT R., KLUESS D., ELLENRIEDER M., MITTELMEIER W., VAN RIENEN U. et al., Evaluation of electric field distribution in electromagnetic stimulation of human femoral head, Bioelectromagnetics, 2014, 35, 547–558.
  • [28] TADANO S., GIRI B., X-ray diffraction as a promising tool to characterize bone nanocomposites, Sci. Technol. Adv. Mater., 2011, 12(6), 064708.
  • [29] WEINER S., WAGNER H.D., The material bone: structuremechanical function relations, Annu. Rev. Mater. Sci., 1998, 28, 271–298.
  • [30] WEISS S., Das grosse Lapis – Mineralienverzeichnis Taschenbuch, Weise, München, 2008.
  • [31] YUBAO L., XINGDONG Z., DE GROAT K., Hydrolysis and phase transition of alpha-tricalcium phosphate, Biomaterials, 1997, 18(10), 737–741.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b7d5e34-2bfd-46ad-9a38-40fcea3404e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.