PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary analysis of a rotary compression test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses the problem of material fracture in cross rolling processes. A new test based on rotary compression for determining limit values of the damage function after the Cockroft-Latham criterion is proposed. A FEM analysis is performed to determine the stress and strain states in a workpiece subjected to this test. The numerical results demonstrate that the axial region of the workpiece is characterized by the presence of alternating tensile and compressive stresses conducive to fracture. The distribution of the Cockroft-Latham integral in the axial region of the workpiece is determined.
Twórcy
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • 1. Kim S. W., Lee Y. S., Comparative Study on Failure Prediction in Warm Forming Processes of Mg Alloy Sheet by the FEM and Ductile Fracture Criteria. Metallurgical and Materials Transactions B 45B (2014) 445-453.
  • 2. Li H., Fu M. W., Lu J., Yang H., Ductile fracture: Experiments and computations. International Journal of Plasticity 27 (2014) 147-180.
  • 3. Yan Y., Wang H., Wan M., Prediction of fracture in press bend forming of aluminum alloy high-stiffener integral panels. Computational Materials Science 50 (2011) 2232-2244.
  • 4. Wu Z., Li S., Zhang W., Wang W., Ductile fracture simulation of hydropiercing process based on vari-ous criteria in 3D modeling. Materials and Design 31 (2010) 3661-3671.
  • 5. Otzurk F., Lee D., A New Methodology for Ductile Fracture Criteria to Predict the Forming Limits. Journal of Materials Engineering and Performance 62 (2007) 2 224-228.
  • 6. Otzurk F., Lee D., Analysis of forming limits using ductile fracture criteria. Journal of Materials Pro-cessing Technology 147 (2004) 397-404.
  • 7. Hambli R., Reszka M., Fracture criteria identification using an inverse technique method and blanking experiment. International Journal of Mechanical Sciences 44 (2002) 1349-1361.
  • 8. Kraisnik M., Vilotic D., Sidanin L., Stefanovic M., Various Approaches to Defining the Criteria of Ductile Crack in Cold Bulk Forming Processes. Annals of Faculty Engineering Hunedoara – International Journal of Engineering 13 (2015) 2 213-218.
  • 9. Wang Z., Sun S., Wang B., Shi Z., Fu W., Importance and role of grain size in free surface cracking prediction of heavy forgings. Materials Science & Engineering A 625 (2015) 321-330.
  • 10. Novella M. F., Ghiotti A., Bruschi S., Bariani P. F., Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars. Journal of Materials Processing Technology 222 (2015) 259-267.
  • 11. Kim H. K., Kim W. J., Failure prediction of magnesium alloy sheets deforming at warm temperatures using the Zener-Holloman parameter. Mechanics of Materials 42 (2010) 293-303.
  • 12. Bjorklund O., Govik A., Nilsson L., Prediction of fracture in a dual-phase steel subjected to non-linear straining. Journal of Materials Processing Technology 214 (2014) 2748-2758.
  • 13. Yu S., Feng W., Experimental research on ductile fracture criterion in metal forming. Frontiers of Mechanical Engineering 6 (2011) 3 308-311.
  • 14. Coppola T., Cortese L., Folgarait P., The effect of stress invariants on ductile fracture limit in steels. En-gineering Fracture Mechanics 76 (2009) 1288-1302.
  • 15. Goijarets A. M., Govaert L. E., Baaijens F. P. T., Evaluation of ductile fracture models for different metals in blanking. Journal of Materials Processing Technology 110 (2001) 312-323.
  • 16. Zhou J., Yu Z., Zeng Q., Analysis and experimental studies of internal voids in multi-wedge cross wedge rolling stepped shaft. The International Journal of Advanced Manufacturing Technology 72 (2014) 1559-1566.
  • 17. Yang C., Zhang K., Hu Z., Development of central minute cavity in the workpiece of cross wedge rolling. Applied Mechanics and Materials 215-216 (2012) 766-770.
  • 18. Pater Z., Cross-Wedge Rolling. In Comprehensive Materials Processing, Ed. Elsevier Ltd., Vol. 3 (2014) 211-279.
  • 19. Pater Z. Sposób wyznaczania właściwości plastycznych materiałów metodą obciskania obrotowego narzędziami płaskimi. Patent RP nr 220786 (2014-11-05).
  • 20. Pater Z. Sposób wyznaczania własności plastycznych materiałów metodą obciskania obrotowego dwoma walcami. Patent RP nr 220753 (2015-05-08).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b7c5cc5-c38d-4fec-bd39-23fca62f1a8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.