PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the Thermal Stability and Decomposition Kinetics of Polypropylene Glycol – Glycidyl Azide Polymer – Polypropylene Glycol (PPG-GAP-PPG) as a Novel Triblock Copolymer Binder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the novel energetic triblock copolymer of polypropylene glycol- glycidyl azide polymer- polypropylene glycol (PPG-GAP-PPG) (Mn= 1419 g·mol–1) was synthesized by cationic ring-opening polymerization of propylene oxide using low molecular weight glycidyl azide polymer (GAP) (MMnn = 1006 g·mol–1) as the initiator and boron trifluoride etherate (BFM3·OEtM2) as the catalyst. The synthesized GAP and triblock copolymer were characterized by Fourier-transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance spectroscopy (1H and 13C NMR). The thermal stability of the triblock copolymer PPG-GAP-PPG was studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). The DSC results showed that the glass transition temperature (TMg) of the triblock copolymer (TMg = −63 °C) was lower than that of neat low molecular weight GAP (Tg = −53 °C). Furthermore, the results indicated that this triblock copolymer is more stable than GAP. The influence of heating rate (10, 20, 30 and 40 °C·min−1) illustrated that increasing the heating rate results in an increase in the triblock copolymer’s decomposition temperature. Non-isothermal methods, proposed by ASTM E698, Flynn-Wall-Ozawa (FWO) and Kissinger, were used to calculate the kinetic parameters, such as activation energy and frequenc factor, for the thermal decomposition of the triblock copolymer PPG-GAP-PPG, using the DSC-DTG were 124.610 and 126.13 kJ·mol–1, respectively.
Rocznik
Strony
262--279
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Chemistry and Chemical Engineering, Malek Asthar Univeristy of Technology, P.O. Box 16765-3454, Tehran, Iran
  • Department of Chemistry and Chemical Engineering, Malek Asthar Univeristy of Technology, P.O. Box 16765-3454, Tehran, Iran
  • Department of Chemistry and Chemical Engineering, Malek Asthar Univeristy of Technology, P.O. Box 16765-3454, Tehran, Iran
Bibliografia
  • [1] Badgujar, D.; Talawar, M.; Asthana, S.; Mahulikar, P. Advances in Science and Technology of Modern Energetic Materials: An Overview. J. Hazard Mater. 2008, 151(2-3): 289-305.
  • [2] Mahkam, M.; Nabati, M.; Latifpour, A.; Aboudi, J. Synthesis and Characterization of New Nitrogen-rich Polymers as Candidates for Energetic Applications. Des. Monomers Polym. 2014, 17(5): 453-457.
  • [3] Abrishami, F.; Zohari, N.; Zeynali, V. Synthesis and Kinetic Study on the Thermal Degradation of Triblock Copolymer of Polycaprolactone-Poly(Glycidyl Nitrate)-Polycaprolactone (PCL-PGN-PCL) as an Energetic Binder. Polym. Adv. Technol. 2019;30(3):640-647
  • [4] Betzler, F.M.; Hartdegen, V.A.; Klapötke, T.M.; Sproll, S.M. A New Energetic Binder: Glycidyl Nitramine Polymer. Cent. Eur. J. Energ. Mater. 2016, 13(2):289-300.
  • [5] Ampleman, G. Glycidyl Azide Polymer. US Patent 5359012, 1994.
  • [6] Selim, K.; Özkar, S.; Yilmaz, L. Thermal Characterization of Glycidyl Azide Polymer (GAP) and GAP-based Binders for Composite Propellants. J. Appl. Polym. Sci. 2000, 77(3): 538-546.
  • [7] Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials. (DeLuca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M., Eds.) Springer, 2017; ISBN 978-3-319-27746-2.
  • [8] Pisharath, S.; Ang, H.G. Thermal Decomposition Kinetics of a Mixture of Energetic Polymer and Nitramine Oxidizer. Thermochim. Acta 2007, 459(1-2): 26-33.
  • [9] Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I. Azido Polymers – Energetic Binders for Solid Rocket Propellants. J. Macromol. Sci., C Polymer Rev. 2003, 43(4): 505-545.
  • [10] Meyer, R.; Köhler, J.; Homburg, A. Explosives. John Wiley & Sons, 2016.
  • [11] Wang, X.; Shu, Y.; Lu, X.; Mo, H.; Xu, M. Synthesis and Characterization of PolyNIMMO-HTPB-PolyNIMMO Triblock Copolymer as a Potential Energetic Binder. Cent. Eur. J. Energ. Mater. 2018, 15(3): 456-467.
  • [12] Bayat, Y.; Chizari, M. Synthesis, Characterization and Stability of Triblock Copolymer Based on Tetrahydrofuran and Glycidylazide as Binder. Polym. Sci. Ser. B. 2018, 60(5): 621-628.
  • [13] Chizari, M.; Bayat, Y. Synthesis and Kinetic Study of a PCL-GAP-PCL Tri-block Copolymer. Cent. Eur. J. Energ. Mater. 2018, 15(2): 243-257.
  • [14] Sun, M.B. Characterization of the Plasticized GAP/PEG and GAP/PCL Block Copolyurethane Binder Matrices and Its Propellants. Propellants, Explos., Pyrotech. 2008, 33(2): 131-138.
  • [15] Min, B.S.; Ko, S.W. Characterization of Segmented Block Copolyurethane Network Based on Glycidyl Azide Polymer and Polycaprolactone. Macromol. Res. 2007, 15(3): 225-233.
  • [16] Deng, J.; Li, G.; Xia, M.; Lan, Y.; Luo, Y. Improvement of Mechanical Characteristics of Glycidyl Azide Polymer Binder System by Addition of Flexible Polyether. J. Appl. Polym. Sci. 2016, 133(35): 43840-43847.
  • [17] Vasudevan, V.; Sundararajan, G. Synthesis of GAP-PB-GAP Triblock Copolymer and Application as Modifier in AP/HTPB Composite Propellant. Propellants, Explos., Pyrotech. 1999, 24(5): 295-300.
  • [18] Mathew, S.; Manu, S.K.; Varghese, T.L. Thermomechanical and Morphological Characteristics of Cross-linked GAP and GAP-HTPB Networks with Different Diisocyanates. Propellants, Explos., Pyrotech. 2008, 33(2):146-152.
  • [19] Pisharath, S.; Ang, H.G. Synthesis and Thermal Decomposition of GAPPoly(BAMO) Copolymer. Polym. Degrad. Stab. 2007, 92(7): 1365-1377.
  • [20] Soman, R.; Athar, J.; Agawane, N.; Shee, S.; Gore, G.; Sikder, A. Synthesis, Characterization and Rheology of Tetrafunctional Glycidyl Azide Polymer vis-àvis Difunctional GAP. Polym. Bull. 2016, 73(2): 449-461.
  • [21] Ertem, S.P.; Yilgor, E.; Kosak, C.; Wilkes, G.L.; Zhang, M.; Yilgor, I. Effect of Soft Segment Molecular Weight on Tensile Properties of Poly(propylene oxide) Based Polyurethaneureas. Polymer 2012, 53(21): 4614-4622.
  • [22] Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F.R.; Frey, H. Polymerization of Ethylene Oxide, Propylene Oxide, and other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 2015, 116(4): 2170-2243.
  • [23[ Johari, G.; Hallbrucker, A.; Mayer, E. Calorimetric Relaxation and Glass Transition in Poly(propylene glycols) and Its Monomer. J. Polym. Sci., B: Polymer Physics 1988, 26(9): 1923-1930.
  • [24] Lindner, R.; Lejkowski, M.L.; Lavy, S.; Deglmann, P.; Wiss, K.T.; Zarbakhsh, S.; Meyer, L.; Limbach, M. Ring-opening Polymerization and Copolymerization of Propylene Oxide Catalyzed by N-Heterocyclic Carbenes. ChemCatChem. 2014, 6(2): 618-625.
  • [25] Furukawa, M.; Yokoyama, T. Mechanical Properties of Organic-Inorganic Polyurethane Elastomers. I. Al(OH)3-Polyurethane Composites Based on PPG. J. Appl. Polym. Sci. 1994, 53(13): 1723-1729.
  • [26] Cooper, W.; Pope, G.; Vaughan, G. Polypropylene Oxide Elastomers-I. Polymer Synthesis and Vulcanization. Eur. Polym. J. 1968, 4(2): 207-216.
  • [27] Barlow, A.J.; Erginsav, A. Viscoelastic Properties of Poly(propylene glycols). Polymer 1975, 16(2): 110-114.
  • [28] Min, B.S. Synthesis of Azide-terminated Glycidyl Azide Polymer with Low Molecular Weight. J. Korea Inst. Mil. Sci. Technol. 2005, 8(1): 69-80.
  • [29] Kubota, N.; Sonobe, T. Combustion Mechanism of Azide Polymer. Propellants, Explos., Pyrotech. 1988, 13(6): 172-177.
  • [30] Holden, G. Understanding Thermoplastic Elastomers. Hanser Verlag, 2000; ISBN 978-1569902899.
  • [31] Uyar, T.; Hacaloğlu, J. Thermal Degradation of Poly(propylene oxide) and Polyepichlorohydrin by Direct Pyrolysis Mass Spectrometry. J. Anal. Appl. Pyrolysis. 2002, 64(2): 379-393.
  • [32] Sivalingam, G.; De, P.; Karthik, R.; Madras, G. Thermal Degradation Kinetics of Vinyl Polyperoxide Copolymers. Polym. Degrad. Stab. 2004, 84(1): 173-179.
  • [33] Ries, A.; Canedo, E.L.; Souto, C.R.; Wellen, R.M. Non-isothermal Cold Crystallization Kinetics of Poly(3-hydoxybutyrate) Filled with Zinc Oxide. Thermochim. Acta 2016, 637: 74-81.
  • [34] Singh, A.; Sharma, T.C.; Kumar, M.; Narang, J.K.; Kishore, P.; Srivastava, A. Thermal Decomposition and Kinetics of Plastic Bonded Explosives Based on Mixture of HMX and TATB with Polymer Matrices. Def. Technol. 2017, 13(1):22-32.
  • [35] Li, H.; Pan, R.; Wang, W.; Zhang, L. Thermal Decomposition and Kinetics Studies on Poly(BDFAO/THF), Poly(DFAMO/THF), and Poly(BDFAO/DFAMO/THF). J. Therm. Anal. Calorim. 2014, 118(1): 189-196.
  • [36] Liu, S.J.; Hou, X.; Fang, C.G.; Ma, R.T.; Jiang, Z.H. Thermal Degradation Kinetics and Lifetime Prediction of Poly(aryl ether ketone)s containing 2,6-Naphthalene Moieties. J. Appl. Polym. Sci. 2009, 112(2): 904-909.
  • [37] ASTM E698-05 Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method. 2005.
  • [38] Kishore, K.; Sridhara, K. Solid Propellant Chemistry Condensed Phase Behaviour of Ammonium Perchlorate-based Solid Propellants. DESIDOC, Dehli, 1999, p. 149;ISBN 81-86514-02-6.
  • [39] Sunitha, M.; Nair, C.R.; Krishnan, K.; Ninan, K. Kinetics of Alder-ene Reaction of Tris(2-allylphenoxy)triphenoxycyclotriphosphazene and Bismaleimides – a DSC Study. Thermochim. Acta 2001, 374(2): 159-169.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b7be885-c3a7-4337-9379-71af2550381e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.