PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ procesów utleniania i wygrzewania w atmosferze zawieraj ˛acej fosfor lub azot na jakos´c mi ˛ ´ edzypowierzchni dielektryk/półprzewodnik w strukturze MOS Ti/SiO2/4H-SiC

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The influence of oxidation and annealing processes in the phosphorus or nitrogen containing atmosphere on the quality of the dielectric/semiconductor interface in the Ti/SiO2/4H-SiC metal-oxide-semiconductor structure
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki prac nad formowaniem tlenku termicznego na powierzchni w ˛eglika krzemu oraz wpływ wygrzewania w atmosferze zawieraj ˛acej fosfor lub azot na jakos´c mi ˛ ´ edzypowierzchni dielektryk/półprzewodnik/ w układzie SiO2/4H-SiC. Stwierdzono, ze wygrzewanie ˙ dwuetapowe w atmosferze POCl3 w temperaturze 1000°C, oraz kolejno NO w temperaturze 1100°C pozwala zredukowac g˛ ´ estos´c stanów pułapkowych ´ do poziomu ok. 2×1011 cm−2 przy kraw ˛edzi pasma przewodnictwa.
EN
The aim of this studies was investigation of the influence of oxidation and annealing processes in the phosphorus or nitrogen containing atmosphere on the quality of the dielectric/semiconductor interface in the Ti/SiO2/4H-SiC metal-oxide-semicondutor structure. It was found that twostage annealing, in POCl3-containing atmosphere at the temperature of 1000°C, and successively in NO-containing atmosphere at the temperature of 1100°C allows to reduce the density of interface trap to the level of approx. 2×1011cm−2 near the conduction band edge.
Rocznik
Strony
99--104
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Sieć Badawcza Łukasiewicz - Instytut Mikroelektroniki i Fotoniki, Al. Lotników 32/46 02-668 Warszawa
  • Politechnika Warszawska, Instytut Mikroelektroniki i Optoelektroniki, ul. Koszykowa 75, 00-662 Warszawa
  • Sieć Badawcza Łukasiewicz - Instytut Mikroelektroniki i Fotoniki, Al. Lotników 32/46 02-668 Warszawa
  • Sieć Badawcza Łukasiewicz - Instytut Mikroelektroniki i Fotoniki, Al. Lotników 32/46 02-668 Warszawa
  • Sieć Badawcza Łukasiewicz - Instytut Mikroelektroniki i Fotoniki, Al. Lotników 32/46 02-668 Warszawa
  • Politechnika Warszawska, Instytut Mikroelektroniki i Optoelektroniki, ul. Koszykowa 75, 00-662 Warszawa
  • Sieć Badawcza Łukasiewicz - Instytut Mikroelektroniki i Fotoniki, Al. Lotników 32/46 02-668 Warszawa
Bibliografia
  • [1] Hiyoshi, T., Masuda, T., Wada, K., Harada, S., Namikawa, Y.: Improvement of Interface State and Channel Mobility Using 4H-SiC (0-33-8) Face Materials Science Forum, 740-742, pp. 506—509, 2013.
  • [2] Liu, G., Ahyi, A. C., Xu, Y., Isaacs-Smith, T., Sharma, Y. K., Williams, J. R. i inni: Enhanced Inversion Mobility on 4H-SiC (1120) Using Phosphorus and Nitrogen Interface Passivation, IEEE Electron Device Letters, 34(2), pp. 181—183, 2013.
  • [3] Chung, G. Y., Tin, C. C., Williams, J. R., McDonald, K., Di Ventra, M., Pantelides, S. T. i inni: Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide, Appl. Phys. Lett., 76(13), pp. 1713-–1715, 2000.
  • [4] Li, H., Dimitrijev, S., Harrison, H. B., Sweatman, D.: Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing, Applied Physics Letters, 70(15), pp. 2028-–2030, 1997.
  • [5] Jamet, P., Dimitrijev, S., Tanner, P.: Effects of nitridation in gate oxides grown on 4H-SiC, Journal of Applied Physics, 90(10), pp. 5058-–5063, 2001.
  • [6] Lai, P. T., Chakraborty, S., Chan, C. L., Cheng, Y. C.: Effects of nitridation and annealing on interface properties of thermally oxidized SiO2/SiC metal–oxide–semiconductor system, Applied Physics Letters, 76(25), pp. 3744-–3746, 2000.
  • [7] Afanasev, V. V., Stesmans, A., Ciobanu, F., Pensl, G., Cheong, K. Y., Dimitrijev, S.: Mechanisms responsible for improvement of 4H–SiC/SiO2 interface properties by nitridation, Appl. Phys. Lett., 82(4),pp. 568-–570, 2003.
  • [8] Gudjónsson, G., Ólafsson, H. Ö., Sveinbjörnsson, E. Ö.: Enhancement of Inversion Channel Mobility in 4H-SiC MOSFETs using a Gate Oxide Grown in Nitrous Oxide (N2O), Materials Science Forum, 457-460, pp. 1425—1428, 2004.
  • [9] Yoshioka, H., Nakamura, T., Kimoto, T.: Generation of very fast states by nitridation of the SiO2/SiC interface, Journal of Applied Physics, 112(2), 024520, 2012.
  • [10] Rozen, J., Dhar, S., Zvanut, M. E., Williams, J. R., Feldman, L. C. : Density of interface states, electron traps, and hole traps as a function of the nitrogen density in SiO2 on SiC, Journal of Applied Physics, 105(12), 124506, 2009.
  • [11] Chew, K., Tin, C., Ahyi, C., Chong, K., Liang, M., Chong, S. i inni: A Study on the Electronic Properties of Nitric Oxide Annealed MOS Structures Processed on 4H-SiC, MRS Proceedings, 1305, Mrsf10-1305-aa17-35, 2011.
  • [12] Peng, Z. Y., Wang, Y. Y., Shen, H. J., Bai, Y., Tang, Y. D., Chen, X. M. i inni: Re-Investigation of SiC/SiO2 Interface Passivation by Nitrogen Annealing, Materials Science Forum, 897, pp. 335-–339, 2017.
  • [13] Okamoto, D., Yano, H., Hirata, K., Hatayama, T., Fuyuki, T.: Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide, IEEE Electron Device Letters, 31(7), pp. 710-–712, 2010.
  • [14] Yano, H., Hatayama, T., Fuyuki, T.: POCl3 Annealing as a New Method for Improving 4H-SiC MOS Device Performance, ECS Transactions, 50(3), pp. 257–265, 2012.
  • [15] Stedile, F. C., Radtke, C., Soares, G. V., Pitthan, E., Palmieri, R., Corrêa, S. A.: SiO2/SiC Interfacial Region: Presence of Silicon Oxycarbides and Effects of Hydrogen Peroxide and Water Vapor Thermal Treatments, Materials Science Forum, 717-720, pp. 747–752, 2012.
  • [16] Król, K., Sochacki, M., Turek, M., ˙ Zuk, J., Borowicz, P., Tekli ´nska, D. i inni: Influence of Phosphorus Implantation on Electrical Properties of Al/SiO2/4H-SiC MOS Structure, Materials Science Forum, 821-823, pp. 496—499, 2015.
  • [17] Liu, X.-Y., Hao, J.-L., You, N.-N., Bai, Y., Tang, Y.-D., Yang, C.-Y., Wang, S.-K.: High-Mobility SiC MOSFET With Low Dit Using High Pressure Microwave Plasma Oxidation, Chinese Physics B., 29, 037301, 2020.
  • [18] Jo, Y.-J., Moon, J.-H., Seok, O., Bahng, W., Park, T.-J., Ha M.-W.: Electrical Characteristics of SiO2/4H-SiC Metal-oxidesemiconductor Capacitors with Low-temperature Atomic Layer Deposited SiO2, Journal of Semiconductor Technology and Science, 17(2), pp. 265–270, 2017.
  • [19] Afanasev, V. V., Bassler, M., Pensl, G., Schulz, M: Intrinsic SiC/SiO2 Interface States, Physica Status Solidi (a), 162(1), pp. 321-–337, 1997.
  • [20] Swanson, L. K., Fiorenza, P., Giannazzo, F., Frazzetto, A., Roccaforte, F.: Correlating macroscopic and nanoscale electrical modifications of SiO2/4H-SiC interfaces upon postoxidation- annealing in N2O and POCl3, Applied Physics Letters, 101(19), 193501, 2012.
  • [21] Peng, Z. Y., Wang, Y. Y., Shen, H. J., Bai, Y., Tang, Y. D., Wu, J. i inni: Investigation of the Interface Quality and Reliability of 4H-SiC MOS Structure with NO and Forming Gas Annealing Treatment, Materials Science Forum, 858, pp. 647-–650, 2016.
  • [22] Williams, J. R., Chung, G. Y., Tin, C. C., McDonald, K., Farmer, D., Chanana, R. K. i inni: Passivation of the 4H-SiC/SiO2 Interface with Nitric Oxide, Materials Science Forum, 389-393, pp. 967–972, 2002.
  • [23] Piskorski, K., Przewłocki, H. M., Esteve, R., Bakowski, M.: Characterization of band diagrams of different metal-SiO2- SiC(3C) structures, Materials Science Forum, 711, pp. 99– 103, 2012.
  • [24] Okamoto, D., Sometani, M., Harada, S., Kosugi, R., Yonezawa, Y., Yano, H.: Improved Channel Mobility in 4HSiC MOSFETs by Boron Passivation, IEEE Electron Device Letters, 35(12), pp. 1176-–1178, 2014.
  • [25] Król, K., Sochacki, M., Szmidt, J.:: Investigation on the mechanisms of nitrogen shallow implantation influence on trap properties of SiO2/n-type 4H-SiC interface, Acta Physica Polonica A, 125, pp. 1033–1037, 2014.
  • [26] Kodigala, S. R., Chattopadhyay, S., Overton, C., Ardoin, I., Gordon, B. J., Johnstone, D. i inni: Growth and surface analysis of SiO2 on 4H-SiC for MOS devices, Applied Surface Science, 330, pp. 465-–475, 2015.
  • [27] Palmieri, R., Radtke, C., Silva, M. R., Boudinov, H., da Silva, E. F.: Trapping of majority carriers in SiO2/4H-SiC structures., Journal of Physics D: Applied Physics, 42(12), 125301, 2009.
  • [28] S. Salemi, N. Goldsman, A. Akturk, A. Lelis, in: Proc. Int. Conf. on Simulation of Semiconductor Process and Devices SISPAD 2012, Denver (USA), IEEE, Piscataway 2012, p. 121.
  • [29] Deák, P., Knaup, J. M., Hornos, T., Thill, C., Gali, A., Frauenheim, T.: The mechanism of defect creation and passivation at the SiC/SiO2interface, Journal of Physics D: Applied Physics, 40(20), pp. 6242—6253, 2007.
  • [30] Fiorenza, P., Giannazzo, F., Roccaforte, F.: Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review, Energies, 12(12), 2310, 2019.
  • [31] Pensl, G, Bassler, M, F. Ciobanu, V. V. Afanas’ev, H. Yano, T. Kimoto, and H. Matsunami, Silicon Carbide–Materials, Processing and Devices, edited by A. Agarwal, M. Skowronski, Cooper, J.A. Jr., and E. Janzén, MRS Symposia Proceedings No. 640 Materials Research Society, Pittsburgh, 2001, p. H3.2.1.
  • [32] Okuno, E., Endo, T., Sakakibara, T., Onda, S., Itoh, M., Uda, T. : Ab Initio Calculations of SiO2/SiC Interfaces and High Channel Mobility MOSFET with (11-20) Face, Materials Science Forum, 615-617, pp. 793-–796, 2009.
  • [33] Fujihira, K., Tarui, Y., Imaizumi, M., Ohtsuka, K., Takami, T., Shiramizu, T. i inni: Characteristics of 4H–SiC MOS interface annealed in N2O, Solid-State Electronics, 49(6), pp. 896— 901, 2005.
  • [34] Pantelides, S. i inni: Si/SiO2 and SiC/SiO2 Interfaces for MOSPRZEGLA ˛D ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 2/2021 103 FETs – Challenges and Advances, Materials Science Forum, 527-529, pp. 935–948, 2006.
  • [35] Maj, G.: On the Relationship Between Refractive Index and Density for Si02 Polymorphs, Phys Chem Minerals, 10, pp. 133–136, 1984.
  • [36] Król, K., Kalisz, M., Sochacki, M., Szmidt, J.: The Influence of Post-Oxidation Annealing Process in O2 and N2O on the Quality of Al/SiO2/n-Type 4H-SiC MOS Interface, Materials Science Forum, 740-742, pp. 753—756, 2013.
  • [37] Taube, A., Guziewicz, M., Kosiel, K., Gołaszewska-Malec, K., Król, K., Kruszka, R. i inni: Characterization of Al2O3/4H-SiC and Al2O3/SiO2/4H-SiC MOS structures, Bulletin of the Polish Academy of Sciences Technical Sciences, 64(3), pp. 547- –551, 2016.
  • [38] Krol, K., Konarski, P., Misnik, M., Sochacki, M., Szmidt, J.: The Effect of Phosphorus Incorporation into SiO2/4H-SiC (0001) Interface on Electrophysical Properties of MOS Structure, Acta Physica Polonica A, 126, pp. 1100–1103, 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b720093-9941-4649-ad5c-048631256e60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.