PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automotive mr shock absorber behaviour considering temperature changes: experimental testing and analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the automotive magnetorheological (MR) shock absorber behaviour in conditions of changing temperature. Its temperature-dependent behaviour was quantified between ambient and maximal operating temperatures of the device. Aspects addressed include the temperature dependence of the control coil resistance in the absorber, the influence of operating current level on control coil temperature and the temperature dependence of the absorber force response and energy dissipation in the system. The results of experiments enabled us to evaluate the mechanical performance of the absorber at varied temperatures.
Słowa kluczowe
Rocznik
Strony
22--28
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
  • Mechanical Engineering and Robotics, Department of Process Control, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
  • Mechanical Engineering and Robotics, Department of Process Control, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
  • Mechanical Engineering and Robotics, Department of Process Control, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Bajkowski J., Skalski P. (2012), Analysis of Viscoelastic Properties of a Magnetorheological Fluid in a Damper, Acta Mechanica et Automatica, 6(3), 5–410.
  • 2. Batterbee D., Sims N. D. (2009), Temperature Sensitive Controller Performance of MR Dampers, Journal of Intelligent Material Systems and Structures, 20, 297–309
  • 3. Choi S. B., Han S. S., Han Y. M. (2005), Vibration Control of a Smart Material Based Damper System Considering Temperature Variation and Time Delay, Acta Mechanica, 180(1–4), 73–82.
  • 4. FLIR Systems Inc. (2019), User’s manual FLIR Exx series, Technical Documentation ,https://www.flir.eu
  • 5. FLUKE Corp. (2019), 8845A/8846A Digital Multimeter. Users Manual. Technical Documentation, http://www.fluke.com
  • 6. Gołdasz J., Sapiński B. (2019), Influence of temperature on the MR squeeze-mode damper, Proceedings of 20th International Carpathian Control Conference ICCC 2019.
  • 7. Gołdasz J., Sapiński B., Jastrzębski Ł. (2018), Assessment of the Magnetic Hysteretic Behaviour of MR Dampers through Sensorless Measurements, vol. 2018, Article ID 3740208, 21 pages.
  • 8. Gordaninejad F., Breese D. G. (1999), Heating of Magnetorheological Fluid Dampers, Journal of Intelligent Material Systems and Structures, 10(8), 634–645.
  • 9. INTECO Ltd. (2019), RT-DAC4/PCI Multi I/O board. User’s Guide, Technical Documentation, http://www.inteco.com.pl
  • 10. Jastrzębski Ł., Sapiński B. (2017), Experimental Investigation of an Automotive Shock Absorber, Acta Mechanica et Automatica, 11(4), 253–259.
  • 11. Kubik M., Gołdasz J. (2019), Multiphysics Model of an MR Damper including Magnetic Hysteresis, Shock and Vibration, Article ID 3246915, 20 pages.
  • 12. McKee M., Gordaninejad F., Wang X. (2018), Effects of tempera-ture on performance of compressible magnetorheological fluid sus-pension systems, Journal of Intelligent Material Systems and Structures, 29(1), 41–51.
  • 13. MTS System Corp. (2019), MTS 810 & 858 Material Testing Systems, Technical Documentation, http://www.mts.com
  • 14. Sapiński B., Jastrzębski Ł., Rosół M. (2012), Power amplifier supporting MR fluid-based actuators, Proceedings of 13th International Carpathian Control Conference ICCC 2012, 612–616.
  • 15. Sims N. D. (2006), Limit Cycle Behaviour of Smart Fluid Dampers under Closed-loop Control, Journal of Vibration and Acoustics, 128(4), 413–428.
  • 16. Strecker Z., Roupec J., Mazurek I., Klapka M., (2015), Limiting factors of the response time of the magnetorheological damper, International Journal of Applied Electromagnetics and Mechanics, 47(2), 541–550.
  • 17. WEISS TECHNIK. (2019), Climate Test Chamber, Technical Documentation, https://www.weiss-technik.com.
Uwagi
1. This work is supported by AGH University of Science and Technology under research programme No. 16.16.130.942.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b714dab-ec13-4eb4-ba4c-23ad99d32661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.