Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, high-precision machines require lightweight materials with very high strength. Ion implantation is used to improve the mechanical strength of the material. A further paper presents the influence of manganese and nitrogen ion implantation on changes of microhardness of the surface layer of cobalt alloy. Samples were analyzed with the SEM-EDS Phenom ProX microscope. Microhardness was assessed with the Vickers method, and the loads of 1 gf (0.00981 N) and 5 gf (0.049 N) was applied using a FM-800 from Future-Tech microhardness meter. At a load of 1 gf, the penetration depth of the implanted specimens was reached not exceeding 0.5 um. At this depth, all samples showed an increase in microhardness compared to the unimplanted sample. The highest increase in microhardness was achieved after implantation of Mn ions with dose D=1∙1017 Mn+/cm2 and energy E=175 keV. The increased load on the indenter to 5 gf reduced the microhardness differences between implanted and unimplanted samples.
Wydawca
Rocznik
Tom
Strony
179--185
Opis fizyczny
Bibliogr. 39 poz., fig., tab.
Twórcy
autor
- Department of Automotive Vehicles, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka str. 36, 20-618 Lublin, Poland
autor
- Department of Automotive Vehicles, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka str. 36, 20-618 Lublin, Poland
autor
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka str. 36, 20-618 Lublin, Poland
autor
- Institute of Physics, M. Curie-Skłodowska University, M. Curie-Sklodowska sq. 1, 20-031 Lublin, Poland
Bibliografia
- 1. Adamiec, P. and Dziubiński, J. Wytwarzanie i właściwości warstw wierzchnich elementów maszyn tranposrtowych. WPŚ: Gliwice 2005.
- 2. Adamiec, P. and Dziubiński, J. Wybrane zagadnienia materiałów konstrukcyjnych i technologii wytwarzania pojazdów. WPŚ: Gliwice 1998.
- 3. Moćko, W. Analiza wytężenia zaworu silnikowego wykonanego ze stopu tytanu Ti6Al4V obciążonego mechanicznie i cieplnie. Transport samochodowy 2014, 4, 55–71.
- 4. Yao, J., Zhang, Q., Kong, F., and Ding, Q. Laser hardening techniques on steam turbine blade and application. Physics Procedia 2010, 5, 399–406.
- 5. Li, B., Jin, Y., Yao, J., Li, Z., Zhang, Q., and Zhang, X. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings. Optics & Laser Technology 2018, 100, 27–39.
- 6. Janicki, D. Microstructure and sliding wear behaviour of in-situ TiC-reinforced composite surface layers fabricated on ductile cast iron by laser alloying. Materials 2018, 11.
- 7. Wang, Z. and Suzuki, T. Friction law in dry metal forming of materials with work hardening. Procedia Manufacturing 2018, 15, 475–480.
- 8. Hughes, D.A. and Hansen, N. The microstructural origin of work hardening stages. Acta Materialia 2018, 148, 374–383.
- 9. Żebrowski, R., Walczak, M., Klepka, T., and Pasierbiewicz, K. Effect of the shot peening on surface properties of Ti-6Al-4V alloy produced by means of DMLS technology. Eksploatacja i Niezawodnosc 2019, 21, 46–53.
- 10. Maruszczyk, A., Dudek, A., and Szala, M. Research into Morphology and Properties of TiO2 – NiAl Atmospheric Plasma Sprayed Coating. Advances in Science and Technology Research Journal 2017, 11, 204–210.
- 11. Szala, M. and Hejwowski, T. Cavitation Erosion Resistance and Wear Mechanism Model of Flame- Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings. Coatings 2018, 8, 254.
- 12. Szala, M., Walczak, M., Pasierbiewicz, K., and Kamiński, M. Cavitation erosion and slidingwear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate. Coatings 2019, 9.
- 13. Budzyński, P., Kamiński, M., Surowiec, Z., and Skuratov, V.A. Mechanical and electrical properties of the titanium surface layer irradiated with 168 MeV136Xe ions. Przeglad Elektrotechniczny 2018, 94.
- 14. Budzynski, P., Kara, L., Küçükömeroʇlu, T., and Kaminski, M. The influence of nitrogen implantation on tribological properties of AISI H11 steel. Vacuum 2015, 122, 230–235.
- 15. Foerster, C. E., Silva, S.L.R. da, Fitz, T., Dekorsy, T., Prokert, F., Kreiβig, U., Richter, E., Möller, W., Lepienski, C.M., and M. Siqueira, C.J. de Carbon ion implantation into aluminium: Mechanical and tribological properties. Surface and Coatings Technology 2006, 200, 5210–5219.
- 16. Budzyński, P. Problematyka tarcia i zużycia tworzym metalowych implantowanych jonowo w technologii maszyn. Wydawnictwo Politechniki Lubelskiej: Lublin 2010.
- 17. Zhu, Y.-C., Fujita, K., Iwamoto, N., Nagasaka, H., and Kataoka, T. Influence of boron ion implantation on the wear resistance of TiAlN coatings. Surface and Coatings Technology 2002, 158–159, 664–668.
- 18. Yan, S., Zhao, W., Rück, D., Xue, J., and Wang, Y.. Study of tribological properties of high-speed steel implanted by high-dose carbon ions. Surface and Coatings Technology 1998, 103–104, 348–352.
- 19. Burakowski, T. and Wierzchoń, T. Inżynieria powierzchni metali. WNT: Warszawa 1995.
- 20. Das, S., Armstrong, D.E.J. , Zayachuk, Y., Liu, W., Xu, R., and Hofmann, F. The effect of helium implantation on the deformation behaviour of tungsten: X-ray micro-diffraction and nanoindentation. Scripta Materialia 2018, 146, 335–339.
- 21. Derry, T. E., Lisema, L.I., Magabe, A.T. , Aradi, E., Machaka, R., and Madhuku, M. Allotrope conversion and surface hardness increase in ion implanted boron nitride. Surface and Coatings Technology 2018, 355, 61–64.
- 22. Vlcak, P., Cerny, F., Drahokoupil, J., Sepitka, J., and Tolde, Z. The microstructure and surface hardness of Ti6Al4V alloy implanted with nitrogen ions at an elevated temperature. Journal of Alloys and Compounds 2015, 620, 48–54.
- 23. Picard, S., Memet, J., Sabot, R., Grosseau-Poussard, J., Rivière, J., and Meilland, R. Corrosion behaviour, microhardness and surface characterisation of low energy, high current ion implanted austenitic stainless steel. Materials Science and Engineering: A 2001, 303, 163–172.
- 24. Budzyński, P., Kamiński, M., Pałka, K., Droździel, A., and Wiertel, M. The influence of nitrogen ion implantation on microhardness of the Stellite 6 alloy. IOP Conference Series: Materials Science and Engineering 2016, 148
- 25. Ziegler, J.F., Ziegler, M.D., and Biersack, J.P. SRIM – The stopping and range of ions in matter 2010. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2010, 268, 1818–1823.
- 26. Mohammadi, A., Hamidi, S. and Asadabad, M.A. The use of the SRIM code for calculation of radiation damage induced by neutrons. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2017, 412, 19–27.
- 27. Saha, U., Devan, K., and Ganesan, S. A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013. Journal of Nuclear Materials 2018, 503, 30–41.
- 28. Hofsäss, H., Zhang, K. and Mutzke, A. Simulation of ion beam sputtering with SDTrimSP, TRIDYN and SRIM. Applied Surface Science 2014, 310, 134–141.
- 29. Privezentsev, D., Zhiznyakov, A. and Kulkov, Y. Analysis of the Microhardness of Metals Using Digital Metallographic Images. Materials Today: Proceedings 2019, 11, 325–329.
- 30. Kamiński, M., Budzyński, P., Szala, M. and Turek, M. In Tribological properties of the Stellite 6 cobalt alloy implanted with manganese ions, W., M. Eds.; Institute of Physics Publishing: 2018.
- 31. Hou, Q.Y. , Gao, J.S. and Zhou, F. Microstructure and wear characteristics of cobalt-based alloy deposited by plasma transferred arc weld surfacing. Surface and Coatings Technology 2005, 194, 238–243.
- 32. Lin, W.C. and Chen, C. Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding. Surface and Coatings Technology 2006, 200, 4557–4563.
- 33. Klonecki, W. Elementy statystyki dla inżynierów. O. Wyd. Politechniki Wrocławskiej: Wrocław 1996.
- 34. Budzynski, P., Kaminski, M., Wiertel, M., Pyszniak, K. and Droździel, A. Mechanical properties of the stellite 6 cobalt alloy implanted with nitrogen ions. Acta Physica Polonica A 2017, 132, 203–205.
- 35. Nath, V.C., Sood, D.K. and Manory, R.R. Ultramicrohardness and microstructure of Ti-6 wt.%Al-4 wt.%V alloy nitrided by ion implantation. Surface and Coatings Technology 1991, 49, 510–513.
- 36. Didenko, A.N., Kozlov, E.V. , Sharkeev, Y.P., Tailashev, A.S., Rjabchikov, A.I., Pranjavichus, L., and Augulis, L. Observation of deep dislocation structures and “long-range effect” in ion-implanted α-Fe. Surface and Coatings Technology 1993, 56, 97–104.
- 37. Sharkeev, Y. and Kozlov, E. The long-range effect in ion implanted metallic materials: dislocation structures, properties, stresses, mechanisms. Surface and Coatings Technology 2002, 158–159, 219–224.
- 38. Sharkeev, Y.P., Kozlov, E.V., Didenko, A.N., Kolupaeva, S.N. and Vihor, N.A. The mechanisms of the long-range effect in metals and alloys by ion implantation. Surface and Coatings Technology 1996, 83, 15–21.
- 39. Budzyński, P., Kamiński, M., Droździel, A. and Wiertel, M. Long-range effect of ion implantation of Raex and Hardox steels. IOP Conference Series: Materials Science and Engineering 2016, 148.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b6f1816-c5d9-40b1-a00a-50436954fa9e