PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Establishment of constitutive model and dynamic parameter analysis of rubber conveyor belt

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A rubber conveyor belt is an essential piece of equipment in coal mine transportation. Its current motion and performance are directly affected by dynamic parameters. In this paper, a constitutive model has been established to study a rubber conveyor belt in order to analyze its dynamic characteristics. The covered rubber was considered as a classical solid model. The wire rope core was used as a Kelvin model, and a generalized constitutive mathematical model was established. Using Matlab, compariso of the fitting curve and the experimental curve was carried out to ensure reliability in an appropriate way. Meanwhile, the influence of different factors on dynamic parameters of rubber conveyor belts was also discussed by controlling the loading frequency and amplitude as well as external temperature. Finally, the experiment with the fitting curve was compared and verified, and the research results can provide a reference for this engineering field.
Rocznik
Strony
365--378
Opis fizyczny
Bibliogr. 23 poz., tab.
Twórcy
autor
  • School of Mechanical Engineering, Liaoning Technical University, Fuxin, China
autor
  • School of Mechanical Engineering, Liaoning Technical University, Fuxin, China
Bibliografia
  • 1. Behnke R., Kaliske M., 2015, Thermo-mechanically coupled investigation of steady state rolling tires by numerical simulation and experiment, International Journal of Non-Linear Mechanics, 68, 101-131.
  • 2. Chen H.Y., Hu X.B., Zhu H.D., et al., 2020, Analysis of internal stress distribution characteristics of belt conveyor belt, Machine Design, 37, 4, 55-60.
  • 3. Chen H.Y.,Wang X., Zhong S., et al., 2015, Hysteresis characteristic analysis of rubber conveyor belt and parameter prediction of restoring force model (in Chinese), Journal of China Coal Society, 12, 40, 2995-3001.
  • 4. Chen H.Y., Zhang K., Li E.D., 2017, Parameter identification and variation rule analysis of rubber conveyor belt, Journal of Vibration and Shock, 14, 234-238.
  • 5. Cho J.R., Lee H.W., Jeong W.B., Jeong K.M., Kim K.W., 2013, Numerical estimation of rolling resistance and temperature distribution of 3-D periodic patterned tire, International Journal of Solids and Structures, 50, 86-96.
  • 6. Gholipour A., Ghayesh M.H., Hussain S., 2020, A continuum viscoelastic model of Timoshenko NSGT nanobeams, Engineering with Computers, 38, 1, 631-646
  • 7. Gil-Negrete N., Viñolas J., Kari L., 2006, A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code, Journal of Sound and Vibration, 296, 757-776.
  • 8. Hao H.R., Bai H.B., Hou J.F., 2008, Identification of Generalized restoration force model for metal-rubber, Vibration and Shock, 27, 11, 105-110.
  • 9. Jonkers C.O., 1999, The indentation rolling resistance of belt conveyors: A theoretical approach, Fordern und Heben, 30, 4, 384-391.
  • 10. Liu W.W., Weng X.Q., Zhu S.J., et al., 2010, Research on the optimal inversion method for determining the parameters of the rubber viscoelasticity model, Vibration and Shock, 29, 8, 185-190.
  • 11. Lodewijks G., 2013, Determination of rolling resistance of belt conveyors using rubber data: Fact or fiction, Bulk Solids Handling, 23, 6, 384-391.
  • 12. Maria H.J., Lyczko N., Nzihou A., Kuruvilla J., Cherian M., Sabu T., 2014, Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites, Applied Clay Science, Chinese Society of Mechanics, 87, 120-128.
  • 13. Nguyen T.D., Nguyen T.Q., Nhat T.N., Nguyen-Xuan H., Ngo N.K., 2020, A novel approach based on viscoelastic parameters for bridge health monitoring: A case study of Saigon bridge in Ho Chi Minh City – Vietnam, Mechanical Systems and Signal Processing, 141, 106728.
  • 14. Qiu X.J., Chai C., 2011, Estimation of energy loss in conveyor systems due to idler indentation, Journal of Energy Engineering, 137, 36-43.
  • 15. Rudolphi T.J., Reicks A.V., 2006, Viscoelastic indentation and resistance to motion of conveyor belts using a generalized Maxwell model of the backing material, Rubber Chemistry and Technology, 79, 2, 307-319.
  • 16. Sjöberg M., Kari L., 2002, Nonlinear behavior of a rubber isolator system using fractional derivatives, Vehicle System Dynamics, 37, 3, 217-236.
  • 17. Spaans C., 2001, The calculation of main resistance of belt conveyor, Bulk Solids Handling , 11, 4, 809-825.
  • 18. Tong X., Xu J., Doghri I., El Ghezal M.I., Krairi A., Chen X., 2020, A nonlinear viscoelastic constitutive model for cyclically loaded solid composite propellant, International Journal of Solids and Structures, 198, 4, 126-135.
  • 19. Wang R., Li S.Q., Song S.Y., 2007, Research on basic modeling of vibration isolation rubber, Vibration and Shock, 26, 1, 77-80.
  • 20. Yang C.H., Mao J., Li C.L., 2010, Research on indentation resistance of conveyor belt (in Chinese), Journal of China Coal Society, 35, 1, 149-454.
  • 21. Zéhil G.-P., Gavin H.P., 2014, Two and three-dimensional boundary element formulations of compressible isotropic, transversely isotropic and orthotropic viscoelastic layers of arbitrary thickness, applied to the rolling resistance of rigid cylinders and spheres, European Journal of Mechanics A/Solids, 44, 175-187.
  • 22. Zhang S.R., Xia X.H., 2011, Modeling and energy efficiency optimization of belt conveyors, Aplied Energy, 88, 3061-3071.
  • 23. Zhu S.Y., Cai C.B., Spanos P.D., 2015, A nonlinear and fractional derivative visco-elastic model for rail pads in the dynamic analysis of coupled vehicle-slab track systems, Journal of Sound and Vibration, 335, 304-320.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b68ed1b-f346-47d4-a432-67b3fe00e565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.