PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards mass customisation: automatic processing of orders for residential ship’s containers - A case study example

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Along with changes in customer expectations, the process of ordering a house, especially one built with the most modern technology from prefabricated HQ 40-foot shipping containers, should take place in an atmosphere of free-flowing, customer-friendly conversation. Therefore, it is important that the company producing such a solution has a tool supporting such offers and orders when producing personalized solutions. This article provides an original approach to the automatic processing of orders based on an example of orders for residential shipping containers, natural language processing and so-called premises developed. Our solution overcomes the usage of records of the conversations between the customer and the retailer, in order to precisely predict the variant required for the house ordered, also when providing optimal house recommendations and when supporting manufacturers throughout product design and production. The newly proposed approach examines such recorded conversations in the sale of residential shipping containers and the rationale developed, and then offers the automatic placement of an order. Moreover, the practical significance of the solution, thus proposed, was emphasized thanks to verification by a real residential ship container manufacturing company in Poland.
Rocznik
Strony
art. no. e145562
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • University of Applied Sciences in Nysa, Armii Krajowej 7, 48-300 Nysa, Poland
  • University of Zielona Góra, ul. Licealna 9,65-417 Zielona Góra, Poland
  • Sanpol Sp. z o.o, Sulechowska 27a, 65-119, Zielona Góra, Poland
Bibliografia
  • [1] M. Fathi and A. Ghobakhloo, “Enabling Mass Customization and Manufacturing Sustainability in Industry 4.0 Context: A Novel Heuristic Algorithm for in-Plant Material Supply Optimization,” Sustainability, vol. 12, no. 16, p. 6669, 2020, doi: 10.3390/su 12166669.
  • [2] M. Pędzik, J. Bednarz, Z. Kwidziński, T. Rogoziński, and J. Smardzewski, “The Idea of Mass Customization in the Door Industry Using the Example of the Company Porta KMI Poland,” Sustainability, vol. 12, no. 9, p. 3788, 2020, doi: 10.3390/su12093788.
  • [3] Q. Yinan, M. Zhigang, Z. Min, and G. Hangfei, “Manufacturing practices and servitization: The role of mass customization and product innovation capabilities,” Int. J. Prod. Econ., vol. 228, p. 107747, 2020, doi: 10.1016/j.ijpe.2020.107747.
  • [4] F. Turnera, A. Merleb, and D. Gotteland, “Enhancing consumer value of the co-design experience in mass customization,” J. Bus. Res., vol. 117, pp. 473–483, 2020, doi: 10.1016/j.jbusres.2020.05.052.
  • [5] A. Hamrol, J. Gawlik, and J. Sładek, “Mechanical engineering in industry 4.0,” Manag. Prod. Eng. Rev., vol. 10, no. 3, pp. 1428, 2019, doi: 10.24425/mper.2019.129595.
  • [6] L. Nowicka, “Chatbots and voicebots as the future of communication?” [Online]. Available: https://www.parp.gov.pl/attachments/article/80526/6%20maja%20infor%20prasowe.pdf. [Accessed: 10. Jul. 2022].
  • [7] A. Chaidrata et al., “Intent Matching based Customer Services Chatbot with Natural Language Understanding,” in Proc. 5th International Conference on Communication and Information Systems (ICCIS), 2021, pp. 129–133.
  • [8] J.M. Solis-Quispe, K.M. Quico-Cauti, and W. Ugarte, “Chatbot to simplify customer interaction in e-commerce channels of retail companies,” in Proc. International Conference on Information Technology & Systems, 2021, pp. 561–570.
  • [9] R. Zieliński, “What is Voicebot? Designing the Voicebot.” [Online]. Available: https://thestory.is/pl/journal/voicebot-co-to-projektowanie/ [Accessed: 18. Jul. 2022].
  • [10] G. Aceto et al., “When Voice is the Interface: Conversation Design Insights Based on a Use Case.” in Conversations 2021, 2021. [Online]. Available: https://conversations2021.files.wordpress.com/2021/11/conversations_2021_positionpaper_16_aceto-1.pdf [Accessed: 10. Jul. 2022].
  • [11] S.D. Nithyanandam, S. Kasinathan, D. Radhakrishnan, and J. Jebapandian, “NLP for Chatbot Application: Tools and Techniques Used for Chatbot Application, NLP Techniques for Chatbot, Implementation,” in Proc. Deep Natural Language Processing and AI Applications for Industry 5.0 (IGI Global), 2021, pp. 142–168.
  • [12] J. Skrebeca, P. Kalniete, J. Goldbergs, L. Pitkevica, D. Tihomirova, and A. Romanovs, “Modern Development Trends of Chatbots Using Artificial Intelligence (AI),” in Proc. 62nd International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS), 2021, pp. 1–6.
  • [13] ChatBot. [Online]. Available: https://www.chatbot.com/ [Accessed: 18. Jul. 2022].
  • [14] Inteliwise. [Online]. Available: https://inteliwise.com/ [Accessed: 18. Jul. 2022].
  • [15] K2 Internet S.A. [Online]. Available: https://www.k2bots.ai/projekty/ [Accessed: 18. Jul. 2022].
  • [16] Y. Wang, W. Zhao, and W.X. Wan, “Needs-Based Product Configurator Design for Mass Customization Using Hierarchical Attention Network,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 1, pp. 195–204, 2021, doi: 10.1109/TASE.2019.2957136.
  • [17] W. Wei and H. Chenliang, “A Knowledge Discovery Method of Product Design Requirements Based on Pattern Matching,” Procedia CIRP, vol. 109, pp. 356–361, 2022, doi: 10.1016/j.procir.2022.05.262.
  • [18] G. Fantoni, E. Coli, F. Chiarello, R. Apreda, F. Dell’Orletta, and G. Pratellie, “Text mining tool for translating terms of contract into technical specifications: Development and application in the railway sector,” Comput. Ind., vol. 124, p. 103357, 2021, doi: 10.1016/j.compind.2020.103357.
  • [19] J. Hill, W.R. Ford, and I.G. Farreras, “Real conversations with artificial intelligence: a comparison between human-human on-line conversations and human-chatbot conversations,” Comput. Hum. Behav., vol. 49, pp. 245–250, 2015, doi: 10.1016/j.chb.2015.02.026.
  • [20] E.W.T. Ngai, M.C.M. Lee, M. Luo, P.S.L. Chan, and T. Liang, “An intelligent knowledge-based chatbot for customer service,” Electron. Commer. Res. Appl., vol. 50, p. 101098, 2021, doi: 10.1016/j.elerap.2021.101098.
  • [21] A. Androutsopoulou, N. Karacapilidis, E. Loukis, and Y. Charalabidis, “Transforming the communication between citizens and government through Ai-guided chatbots,” Gov. Inf. Q., vol. 36, no. 2, pp. 358–367, 2018, doi: 10.1016/j.giq.2018.10.001.
  • [22] L. Cui, S. Huang, F. Wei, C. Tan, C. Duan, and M. Zhou, “Super-agent: A Customer Service Chatbot for E-Commerce Websites,” in Proceedings of ACL System Demonstrations, 2017, pp. 97–102.
  • [23] X. Wang, X. Lin, and B. Shao, “How does artificial intelligence create business agility? Evidence from chatbots,” Int. J. Inf. Manage., vol. 66, p. 102535, 2022, doi: 10.1016/j.ijinfomgt.2022.102535.
  • [24] S.F. Wamba, R.E. Bawack, C. Guthrie, M.M. Queiroz, and K.D.A. Carillo, “Are we preparing for a good AI society? A bibliometric review and research agenda,” Technol. Forecast. Soc. Chang., vol. 164, 2021, p. 120482, doi: 10.1016/j.techfore.2020.120482.
  • [25] N. Castelo, M.W. Bos, and D.R. Lehmann, “Task-Dependent Algorithm Aversion. Journal of Marketing Research,” J. Mark. Res., vol. 56, no.5, pp. 809–825, 2019, doi: 10.1177/0022243719851788.
  • [26] R. de Kervenoael, R. Hasan, A. Schwob, and E. Goh, “Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots,” Tourism Manage., vol. 78, p. 104042, 2020, doi: 10.1016/j.tourman.2019.104042.
  • [27] S.I. Lei, H. Shen, and S. Ye, “A comparison between chatbot and human service: customer perception and reuse intention”, Int. J. Contemp. Hosp. Manag., vol. 33, no. 11, pp. 3977–3995, 2021, doi: 10.1108/IJCHM-12-2020-1399.
  • [28] V.N Lu et al., “Service robots, customers and service employees: what can we learn from the academic literature and where are the gaps?,” J. Serv. Theory Pract., vol. 30, no. 3, pp. 361–391, 2020, doi: 10.1108/JSTP-04-2019-0088.
  • [29] J. Frątczak and J. Patalas-Maliszewska, “Design of Customized Sea Container House in the Context of Industry 4.0 – A Case Study,” in Proc. Advances in Manufacturing III, 2022, pp. 200–208, doi: 10.1007/978-3-030-99310-8_16.
  • [30] NLTK Project. [Online]. Available: https://www.nltk.org/ [Accessed: 18. Jul. 2022].
  • [31] I. Rojek, R, Burduk, and P. Heda, “Ensemble selection in one-versus-one scheme – case study for cutting tools classification,” Bull. Pol. Acad. Sci.-Tech. Sci., vol. 69, no. 1, p. e136044, 2021, doi: 10.24425/bpasts.2021.136044.
  • [32] K. Baboolal and P. Hosein, “Material and Cost estimation of a Customized Product based on the Customer’s description,” in Proc. Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA), 2021, pp. 31–37, doi: 10.1109/IDSTA53674.2021.9660821.
  • [33] Y. Han and M. Moghaddam, “Eliciting Attribute-Level User Needs From Online Reviews With Deep Language Models and Information Extraction,” J. Mech. Des., vol. 143, no. 6, p. 061403, 2021, doi: 10.1115/1.4048819.
  • [34] Y. Wang, X. LI, L.L. Zhang, and D. Mo, “Configuring products with natural language: a simple yet effective approach based on text embeddings and multilayer perceptron,” Int. J. Prod. Res., vol. 60, no. 17, pp. 5394–5406, 2022, doi: 10.1080/00207543.2021.1957508.
  • [35] A.J.C. Trappey, Ch. Trappey, M. Chao, N. Hong, and C. Wu, “A VR-Enabled Chatbot Supporting Design and Manufacturing of Large and Complex Power Transformers,” Electronics, 2021, vol. 11, no. 1, p. 87, doi: 10.3390/electronics11010087.
  • [36] M. Müller, E. Alexandi, and J. Metternich, “Digital shop floor management enhanced by natural language processing,” Procedia CIRP, vol. 96, 2021, pp. 21–26, doi: 10.1016/j.procir.2021.01.046.
  • [37] Y. Wang, W. Zhao, and W.X. Wan, “Needs-Based Product Configurator Design for Mass Customization Using Hierarchical Attention Network,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 1, pp. 195–204, 2021, doi: 10.1109/TASE.2019.2957136.
  • [38] R. Dou, W. Li, G. Nan, X. Wang, and Y. Zhou, “How can manufacturers make decisions on product appearance design? A research on optimal design based on customers’ emotional satisfaction,” J. Manag. Sci. Eng., vol 6, no. 2, pp 177–196, 2021, doi: 10.1016/j.jmse.2021.02.010.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b66326c-1200-460b-b11c-7dd81dde98d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.