PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanomateriały w spektrometrii mas z laserową desorpcją/jonizacją wspomaganą powierzchnią

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nanomaterials applied in surface-assisted laser desorption/ionization mass spectrometry
Języki publikacji
PL
Abstrakty
EN
Laser desorption/ionization (LDI) is one of the most popular ionization techniques currently used in mass spectrometry (MS). This technique is most commonly used in a variant of matrix-assisted laser desorption/ionization (MALDI), which uses low molecular weight organic acid mixed with the sample to support the ionization process. However, this approach has some shortcomings such as: high chemical background in the spectral region below m/z 700 making it difficult to analyze compounds giving signals in this spectral region, inhomogeneous co-crystallization of analyte and matrix leading to the formation of so-called "sweet spots", i.e. inhomogeneous distribution of analyte in the crystallizing matrix. For these reasons, increasing research attention is focused on the possibilities offered by the use of matrix-free systems based on nanostructures in laser methods, which are referred to as surface-assisted laser desorption/ionization (SALDI). The use of nanostructures in LDI MS has made it possible to analyze low molecular compounds, often at very low concentrations, without the presence of matrix-derived chemical background, contributing to more applications of the LDI MS method. This work describes what the SALDI technique is and reviews the nanomaterials used in different variations of the approach. Among the described materials used in SALDI there are nanomaterials based on carbon and silicon, including the DIOS method, as well as techniques based on nanoparticles of gold, silver, platinum and titanium oxide. For each method, application examples are given for the detection of different classes of chemical compounds, often also in complex biological mixtures.
Rocznik
Strony
735--754
Opis fizyczny
Bibliogr. 66 poz., rys., wykr.
Twórcy
  • Interdyscyplinarne Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu ul. Wileńska 4, 87-100 Toruń
Bibliografia
  • [1] C.-C. Hu, M.-F. Huang, H.-T. Chang, Bioanalysis, 2013, 5, 633.
  • [2] K.K. Murray, R.K. Boyd, M.N. Eberlin, G.J. Langley, L. Li, Y. Naito, Pure Appl. Chem., 2013, 85, 1515.
  • [3] AY. Lim, J. Ma, Y.C.F. Boey, Adv. Mater., 2012, 24, 4211.
  • [4] J. Sunner, E. Dratz, Y.-Chie. Chen, Anal. Chem., 1995, 67, 4335.
  • [5] R. Arakawa, H. Kawasaki, Anal. Sci., 2010, 26, 1229.
  • [6] Y.-C. Chen, J. Shiea, J. Sunner, J. Chromatogr. A, 1998, 826, 77.
  • [7] S. Ren, L. Zhang, Z. Cheng, Y. Guo, J Am Soc Mass Spectrom, 2005, 16, 333.
  • [8] M. Najam-ul-Haq, M. Rainer, C.W. Huck, P. Hausberger, H. Kraushaar, G.K. Bonn, Anal. Chem., 2008, 80, 7467.
  • [9] Y. Coffinier, S. Szunerits, H. Drobecq, O. Melnyk, R. Boukherroub, Nanoscale, 2012, 4, 231.
  • [10] X. Dong, J. Cheng, J. Li, Y. Wang, Anal. Chem., 2010, 82, 6208.
  • [11] P.-Y. Hua, M. Manikandan, H. N. Abdelhamid, H.-F. Wu, J. Mater. Chem. B, 2014, 2, 7334.
  • [12] I.S. Hosu, M. Sobaszek, M. Ficek, R. Bogdanowicz, H. Drobecq, L. Boussekey, A. Barras, O. Melnyk, R. Boukherroub, Y. Coffinier, Nanoscale, 2017, 9, 9701.
  • [13] S. Chen, H. Zheng, J. Wang, J. Hou, Q. He, H. Liu, C. Xiong, X. Kong, Z. Nie, Anal. Chem., 2013, 85, 6646.
  • [14] J. Wei, J. M. Buriak, G. Siuzdak, Nature, 1999, 399, 243.
  • [15] S. Tuomikoski, K. Huikko, K. Grigoras, P. Östman, R. Kostiainen, M. Baumann, J. Abian, T. Kotiaho, S. Franssila, Lab Chip, 2002, 2, 247.
  • [16] K. Wanner and G. Höfner, “Mass Spectrometry in Medicinal Chemistry”, John Wiley & Sons, Ltd., 2007.
  • [17] N. Budimir, J.-C. Blais, F. Fournier, J.-C. Tabet, J. Mass Spectrom., 2007, 42, 42.
  • [18] W.G. Lewis, Z. Shen, M.G. Finn, G. Siuzdak, Int. J. Mass Spectrom., 2003, 226, 107.
  • [19] X. Wen, S. Dagan, V.H. Wysocki, Anal. Chem., 2007, 79, 434.
  • [20] S.H. Kim, J. Kim, S.-H. Jo, J.-H. Kim, K.J. Kim, S. Yoon, Biointerphases, 2016, 11, 041008.
  • [21] R.A. Picca, C.D. Calvano, M.J. Lo Faro, B. Fazio, S. Trusso, P.M. Ossi, F. Neri, C. D’Andrea, A. Irrera, N. Cioffi, J. Mass Spectrom., 2016, 51, 849.
  • [22] A.R. Korte, N.J. Morris, A. Vertes, Anal. Chem., 2019, 91, 3951.
  • [23] A.R. Korte, S.A. Stopka, N. Morris, T. Razunguzwa, A. Vertes, Anal. Chem., 2016, 88, 8989.
  • [24] H.N. Abdelhamid, H.-F. Wu, Anal. Bioanal. Chem., 2016, 408, 4485.
  • [25] R. Pilolli, F. Palmisano, N. Cioffi, Anal. Bioanal. Chem., 2012, 402, 601.
  • [26] J.A. McLean, K.A. Stumpo, D.H. Russell, J. Am. Chem. Soc., 2005, 127, 5304.
  • [27] A. Tarui, H. Kawasaki, T. Taiko, T. Watanabe, T. Yonezawa, R. Arakawa, J. Nanosci. Nanotech., 2009, 9, 159.
  • [28] H. Kawasaki, T. Sugitani, T. Watanabe, T. Yonezawa, H. Moriwaki, R. Arakawa, Anal. Chem., 2008, 80, 7524.
  • [29] J. Lee, J. Lee, T.D. Chung, W.-S. Yeo, Anal. Chim. Acta, 2012, 736, 1.
  • [30] Y.-J. Li, Y.-T. Tseng, B. Unnikrishnan, C.-C. Huang, ACS Appl. Mater. Interfaces, 2013, 5, 9161.
  • [31] X. Li, J. Tan, J. Yu, J. Feng, A. Pan, S. Zheng, J. Wu, Anal. Chim. Acta, 2014, 849, 27.
  • [32] I. Ocsoy, B. Gulbakan, M.I. Shukoor, X. Xiong, T. Chen, D.H. Powell, W. Tan, ACS Nano, 2013, 7, 417.
  • [33] X.-Y. Pan, C.-H. Chen, Y.-H. Chang, D.-Y. Wang, Y.-C. Lee, C.-C. Liou, Y.-X. Wang, C.-C. Hu, T.-R. Kuo, Anal. Bioanal. Chem., 2019, 411, 2793.
  • [34] V. Amendola, L. Litti, M. Meneghetti, Anal. Chem., 2013, 85, 11747.
  • [35] J. Sekuła, J. Nizioł, W. Rode, T. Ruman, Anal. Chim. Acta, 2015, 875, 61.
  • [36] J. Sekuła, J. Nizioł, M. Misiorek, P. Dec, A. Wrona, A. Arendowski, T. Ruman, Anal. Chim. Acta, 2015, 895, 45.
  • [37] A. Arendowski, K. Ossoliński, J. Nizioł, T. Ruman, Int. J. Mass Spectrom., 2020, 456, 116396.
  • [38] A. Arendowski, K. Ossolinski, J. Niziol, T. Ruman, Anal. Sci., 2020, 36, 1521.
  • [39] A. Arendowski, J. Szulc, J. Nizioł, B. Gutarowska, T. Ruman, Anal. Biochem., 2018, 549, 45.
  • [40] J. Sekuła, J. Nizioł, T. Ruman, Wiadomości Chemiczne, 2016, 70, 519.
  • [41] J. Sekuła, J. Nizioł, W. Rode, T. Ruman, Analyst, 2015, 140, 6195.
  • [42] K. Shrivas, H.-F. Wu, Rapid Commun. Mass Spectrom., 2008, 22, 2863.
  • [43] R.C. Gamez, E.T. Castellana, D.H. Russell, Langmuir, 2013, 29, 6502.
  • [44] Y.E. Silina, F. Meier, V.A. Nebolsin, M. Koch, D.A. Volmer, J. Am. Soc. Mass Spectrom., 2014, 25, 841.
  • [45] Y. Zhao, G. Deng, X. Liu, L. Sun, H. Li, Q. Cheng, K. Xi, D. Xu, Anal. Chim. Acta, 2016, 937, 87.
  • [46] V. Prysiazhnyi, F. Dycka, J. Kratochvil, V. Stranak, P. Ksirova, Z. Hubicka, J. Vac. Sci. Technol. B, 2019, 37, 012906.
  • [47] V. Prysiazhnyi, F. Dycka, J. Kratochvil, J. Sterba, V. Stranak, Anal. Bioanal. Chem., 2020, 412, 1037.
  • [48] J. Nizioł, W. Rode, Z. Zieliński, T. Ruman, Int. J. Mass Spectrom., 2013, 335, 22.
  • [49] J. Nizioł, W. Rode, B. Laskowska, T. Ruman, Anal. Chem., 2013, 85, 1926.
  • [50] A. Arendowski, J. Nizioł, T. Ruman, J. Mass Spectrom., 2018, 53, 369.
  • [51] J. Nizioł, K. Ossoliński, B. P. Tripet, V. Copié, A. Arendowski, T. Ruman, J. Pharm. Biomed. Anal., 2021, 193, 113752.
  • [52] J. Nizioł, K. Ossoliński, B. P. Tripet, V. Copié, A. Arendowski, T. Ruman, Anal. Bioanal. Chem., 2020, 412, 5827.
  • [53] H. Kawasaki, T. Yao, T. Suganuma, K. Okumura, Y. Iwaki, T. Yonezawa, T. Kikuchi, R. Arakawa, Chem. Eur. J., 2010, 16, 10832.
  • [54] S. Nitta, H. Kawasaki, T. Suganuma, Y. Shigeri, R. Arakawa, J. Phys. Chem. C, 2013, 117, 238.
  • [55] H. Kawasaki, T. Ozawa, H. Hisatomi, R. Arakawa, Rapid Commun. Mass Spectrom., 2012, 26, 1849.
  • [56] T. Ozawa, I. Osaka, T. Ihozaki, S. Hamada, Y. Kuroda, T. Murakami, A. Miyazato, H. Kawasaki, R. Arakawa, J. Mass Spectrom., 2015, 50, 1264.
  • [57] K.-H. Lee, C.-K. Chiang, Z.-H. Lin, H.-T. Chang, Rapid Commun. Mass Spectrom., 2007, 21, 2023.
  • [58] Y. Gholipour, S.L. Giudicessi, H. Nonami, R. Erra-Balsells, Anal. Chem., 2010, 82, 5518.
  • [59] H. Sonderegger, C. Rameshan, H. Lorenz, F. Klauser, M. Klerks, M. Rainer, R. Bakry, C.W. Huck, G.K. Bonn, Anal. Bioanal. Chem., 2011, 401, 1963.
  • [60] G. Piret, D. Kim, H. Drobecq, Y. Coffinier, O. Melnyk, P. Schmuki, R. Boukherroub, Analyst, 2012, 137, 3058.
  • [61] C. Gao, D. Zhen, N. He, Z. An, Q. Zhou, C. Li, C.A. Grimes, Q. Cai, Talanta, 2019, 196, 1.
  • [62] W.-T. Chen, C.-K. Chiang, C.-H. Lee, H.-T. Chang, Anal. Chem., 2012, 84, 1924.
  • [63] W.-T. Chen, M.-F. Huang, H.-T. Chang, J. Am. Soc. Mass Spectrom., 2013, 24, 877.
  • [64] Y.-S. Chen, J. Ding, X.-M. He, J. Xu, Y.-Q. Feng, Microchim. Acta, 2018, 185, 368.
  • [65] M. Kusano, S. Kawabata, Y. Tamura, D. Mizoguchi, M. Murouchi, H. Kawasaki, R. Arakawa, K. Tanaka, Mass Spectrometry, 2014, 3, A0026.
  • [66] G. Gedda, H.-F. Wu, Sens. Actuators B Chem., 2019, 288, 667.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b6627f3-f284-44c2-b884-5f4f5909ff00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.