Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents equivalent impedance and operator admittance systems for fractional order elements. Presented models of fractional order elements of the type: sαLα and 1/sαCα, (0 α 1) were obtained using the Laplace transform based on the expansion of the factor sign to an infinite fraction with varying degrees of accuracy - the continued fraction expansion method (CFE). Then circuit synthesis methods were applied. As a result, equivalent circuit diagrams of fractional order elements were obtained. The obtained equivalent schemes consist both of classical RLC elements, as well as active elements built based on operational amplifiers. Numerical experiments were conducted for the constructed models, presenting responses to selected input signals.
Czasopismo
Rocznik
Tom
Strony
801--827
Opis fizyczny
Bibliogr. 37 poz., rys., wzory
Twórcy
autor
- Kielce University of Technology, Department of Industrial Electrical Engineering and Automatic Control, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
- Kielce University of Technology, Department of Industrial Electrical Engineering and Automatic Control, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
- Kielce University of Technology, Department of Industrial Electrical Engineering and Automatic Control, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
- [1] A. Dzieliński, G. Sarwas and D. Sierociuk: Comparison and Validation of Integer and Fractional Order Ultracapacitor Models. Advances in Difference Equations, Springer Open Journal, June, 2011. DOI: 10.1186/1687-1847-2011-11.
- [2] A. Zawadzki and M. Włodarczyk: Modelowanie procesów ładowania i rozładowania superkondensatora. Pomiary Automatyka Kontrola, 56(12), (2010), 1413-1415, (in Polish).
- [3] P. Skruch and W. Mitkowski: Fractional-order Models of the Ultracapacitors. Theory and Applications of Non-integer Order Systems, LNEE 257, Springer International Publishing Switzerland, 2013, 281-293. DOI: 10.1007/978-3-319-00933-9_26.
- [4] R. Martin, J.J. Quintana, A. Ramos and I. Nuez: Modeling electrochemical double layer capacitor, from classical to fractional Iimpedance. The 14th Medditeranean Electrotechnical Conference, Ajaccio, (2008), DOI: 10.1109/MELCON.2008.4618411.
- [5] I.S Jesus and J.A. Tenreiro Machado: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 56 (2009), 45-55. DOI: 10.1007/s11071-008-9377-8.
- [6] J. Schafer and K. Kruger: Modelling of Lossy Coils Using Fractional Derivatives. Journal of Phisics D: Applied Phisics, 41(2008), 367-376. DOI: 10.1088/0022-3727/41/4/045001.
- [7] A. Zawadzki and M. Włodarczyk: Modelowanie strat rzeczywistego elementu indukcyjnego układem ułamkowego rzędu. XXXIX International Conference on Fundamentals of Electrotechnics and Circuit Theory - ICSPETO, (2016), 53-54, (in Polish).
- [8] T. Kaczorek: Fractional positive continuous-time linear systems and their reachability. International Journal of Applied Mathematics and Computer Science, 18(2), (2008), 223-228, DOI: 10.2478/v10006-008-0020-0.
- [9] E. Orsingher and L. Beghin: Time-fractional telegraph equations and telegraph processes with Brownian time. Probability Theory and Related Fields, 128 (2004), 141-160. DOI: 10.1007/s00440-003-0309-8.
- [10] A. Zawadzki and S. Różowicz: Application of input-State of the system transformation for linearization of some nonlinear generators. International Journal of Control Automation and Systems. 13 (2015), 1-8. DOI: 10.1007/s12555-014-0026-3.
- [11] M. Caputo and F. Mainardi: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento, 1 (1971), 161-198. DOI: 10.1007/BF02820620.
- [12] L. Debnath: Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences, 54 (2003), 3413-3442. DOI: 10.1155/S0161171203301486.
- [13] F. Mainardi: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London, Imperial College Press, 2010. DOI: 10.1142/P614.
- [14] J. Sabatier, O.P. Agrawal, and J.A.T. Machado: Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering. Springer, London 2007. DOI: 10.1007/978-1-4020-6042-7.
- [15] R. Metzler and J. Klafter: The random walk’s guide to anomalous diffusion. A fractional dynamics approach. Physics Reports, 339 (2000), 1-77. DOI: 10.1016/S0370-1573(00)00070-3.
- [16] W. Mitkowski: Approximation of fractional diffusion-wave equation. Acta Mechanica et Automatica, 5(2), (2011), 65-68.
- [17] R. Pintelon, J. Schoukens, L. Pauwels and E. Van Gheem: Diffusion systems: Stability, modeling and identification. IEEE Transactions on Instrumentation and Measurement, 54(5), (2005), 2061-2067. DOI: 10.1109/TIM.2005.853351.
- [18] I. Podlubny: Fractional Differential Equations. Academic Press, San Diego 1999.
- [19] W. Bauer, W. Mitkowski and M. Zagórowska: RC-ladder Network with Supercapacitors. XXXIX International Conference on Fundamentals of Electrotechnics and Circuit Theory, IC-SPETO, (2016), 63-64. DOI: 10.24425/119647.
- [20] A. Jakubowska and J. Walczak: Electronic realisations of fractional-order elements: I. Synthesis of the arbitrary order elements. Poznań University of Technology Academic Journals, Electrical Engineering, 85 (2016), 137-148.
- [21] A. Jakubowska and M. Szymczak: Electronic realisations of fractional-order elements: II. Simulation studies. Poznań University of Technology Academic Journals, Electrical Engineering, 85 (2016), 149-159.
- [22] B.T. Krishna: Studies on fractional order differentiators and integrators: A survey. Signal Processing, 91 (2011), 386-426. DOI: 10.1016/j.sigpro.2010.06.022.
- [23] B.T. Krishna and K.V.V.S. Reddy: Active and Passive Realization of Fractance Device of Order ½. Hindawi Publishing Corporation. Active and Passive Electronic Components, 2008. DOI: 10.1155/2008/369421.
- [24] A. Zawadzki and M. Włodarczyk: CFE method - quality analysis of the approximation of reverse laplace transform of fractional order. Prace Naukowe Politechniki Śląskiej. Elektryka. 3-4 (2017), 243-244.
- [25] S. Różowicz, A. Zawadzki, M. Włodarczyk, H. Wachta and K. Baran: Properties of fractional-order magnetic coupling. Energies, 13(7), (2020). DOI: 10.3390/en13071539.
- [26] I. Petras: Fractional-order feedback control of a DC motor. Journal of Electrical Engineering, 60(3), (2009), 117-128.
- [27] A.B. Maundy, A.S. Elwakil and T.J. Freeborn: On the practical realization of higher-order fi lters with fractional stepping. Signal Processing, 91 (2011), 484-491. DOI: 10.1016/j.sigpro.2010.06.018.
- [28] C. Tang, F. You, G. Cheng, D. Gao, F. Fu and X. Dong: Modeling the frequency dependence of the electrical properties of the live human skull. Physiological Measurement, 30 (2009), 1293-1301. DOI: 10.1088/0967-3334/30/12/001.
- [29] N.M. Fonseca Ferreira and J.A. Tenreiro Machado: Fractional-order hybrid control of robotic manipulators. In Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, (2003). DOI: 10.1109/ICSMC.1998.725510.
- [30] A. Zawadzki and S. Różowicz: Application of input-state of the system transformation for linearization of selected electrical circuits. Journal of Electrical Engineering, 67 (2016), 199-205. DOI: 10.1515/jee-2016-0028.
- [31] T. Kaczorek and K. Rogowski: Fractional Linear Systems and Elecrical Circuits. Oficyna Wydawnicza Politechniki Białostockiej. Białystok, 2014. DOI: 10.1007/978-3-319-11361-6.
- [32] C. Li and G. Chen: Chaos in the fractional order Chen system and its control. Chaos, Solitons and Fractals, 22 (2004), 549-554. DOI: 10.1016/j.chaos.2004.02.035.
- [33] M. Sugi, Y. Hirano, Y.F. Miura and K. Saito: Simulation of fractal immittance by analog circuits: An approach to the optimized circuits. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E82 (1999), 1627-1634. DOI: 10.1080/10587250108024711.
- [34] A.G. Radwan, A.M. Soliman and A.S. Elwakil: Fractional-order sinusoidal oscillators: Four practical circuit design examples. International Journal of Circuit Theory and Applications, 36 (2008), 473-492. DOI: 10.1002/cta.453.
- [35] T.J. Freeborn, B. Maundy and A.S. Elwakil: Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), (2013). DOI: 10.1109/JETCAS.2013.2271433.
- [36] J.A.T. Machado: Fractional calculus: Models, algorithms, technology. Journal of Discontinuity, Nonlinearity and Complexity, 4(4), (2015). DOI: 10.5890/DNC.2015.11.002.
- [37] A. Szcześniak, Z. Mychuda, L. Mychuda, and U. Antoniv: Logarithmic ADC with Accumulation of Charge and Impulse Feedback - Construction, Principle of Operation and Dynamic Properties. International Journal of Electronics and Telecommunications, 67(4), (2021), 699-704. DOI: 10.24425/ijet.2021.137865.
Uwagi
The article was realized within the framework of the internship of Sebastian Różowicz, Ph.D., realized at the Rzeszow University of Technology from 1 March 2021, to 30 June 2021, Internship topic: Application of mathematical methods to systems analysis in electrical engineering.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b5f6456-f6d5-431b-ae70-ac8820441066