
907Bull. Pol. Ac.: Tech. 66(6) 2018

Abstract. We focus on two and three-dimensional isogeometric finite element method computations with tensor product C k B-spline basis
functions. We consider the computational cost of the multi-frontal direct solver algorithm executed over such tensor product grids. We present
an algorithm for estimation of the number of floating-point operations per mesh node resulting from the execution of the multi-frontal solver
algorithm with the ordering obtained from the element partition trees. Next, we propose an algorithm that introduces C0 separators between
patches of elements of a given size based on the stimated number of flops per node. We show that the computational cost of the multi-frontal
solver algorithm executed over the computational grids with C0 separators introduced is around one or two orders of magnitude lower, while
the approximability of the functional space is improved. We show O(NlogN) computational complexity of the heuristic algorithm proposing
the introduction of the C0 separators between the patches of elements, reducing the computational cost of the multi-frontal solver algorithm.

Key words: refined isogeometric analysis, finite element method, multi-frontal direct solver, heuristic algorithms.

Heuristic algorithm to predict the location of C 0 separators
for efficient isogeometric analysis simulations with direct solvers

A. PASZYŃSKA1, K. JOPEK2, M. WOŹNIAK2, and M. PASZYŃSKI2*
1Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, 11 Łojasiewicza St., 30-348 Krakow, Poland

2AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications,
30 Mickiewicza Ave., 30-059 Krakow, Poland

browsing the element partition tree. The corresponding ordering
can be obtained by postorder traversal of the element partition
tree. The resulting number of floating-point operations is sim-
ilar, with some advantage of the element partition tree in the
case of adaptive, non-uniform grid [13].

The main idea of the isogeometric analysis (IGA) [14] is to
apply tensor products of higher order global continuity B-splines
or NURBS [30] basis functions for finite element method (FEM)
simulations. The IGA-FEM has multiple applications in time-de-
pendent simulations, including phase field models [15, 16],
cancer growth simulations [18], or phase-separation simula-
tions [19, 20], wind turbine aerodynamics [22], incompressible
hyper-elasticity [17], turbulent flow simulations [26], transport
of drugs in cardiovascular applications [21] or the blood flow
simulations and drug transport in arteries simulations [24, 25].

Recently, a modification to the IGA has been proposed,
namely the refined isogeometric analysis (rIGA) methodology
[27]. The rIGA method postulates that introduction of C 0
separators between patches of elements with tensor products
B-splines basis functions reduces the computational cost of the
multi-frontal direct solvers. The method has been investigated
on uniform [27] or adaptive grids [28, 29]. The location of C0
separators for adaptive grids is somehow natural, since they
are located between the refinement levels [28, 29]. However,
there is no algorithm for automatic selection of the location
of C0 separators between the patches of elements on uniform
grids [27]. Moreover, proper selection of the locations of the
separators is important, since they can save up to two orders of
magnitude in terms of the execution time and the number of the
floating point operations of the resulting direct solver algorithm.

In this paper, we propose an algorithm for estimation of
the number of floating-point operations per unknown (namely,

1. Introduction

The finite element method (FEM) is a popular approach [1‒4] to
approximate solutions of partial differential equations (PDEs).
The discrete approximation of the solution of a PDE using FEM
uses a computational mesh to describe the geometry of the do-
main and basis functions spread over the mesh to approximate
the solution of the PDE. This discrete approximation results in
a sparse global system of linear equations.

Basis functions spread over the computational mesh. Some
of the basis functions overlap, and they generate non-zero entries
in the global system of linear equations. The weak form of PDE
prescribes a way how overlapping basis functions interact and
generate non-zero entries in the global matrix. The weak form
of the PDE is obtained by taking the L2 scalar products with test
functions and performing the integration by parts [1‒4].

The multi-frontal solver is the state-of-the-art algorithm
for solving sparse linear systems resulting from finite element
method discretizations [5‒8].

Classical multi-frontal solvers [5‒7] use an ordering con-
structed based on the analysis of the sparsity of the global ma-
trix [12]. Based on the ordering, they construct the elimination
tree and perform the multi-frontal elimination of rows of the
sparse global matrix, using the tree.

We have shown that reverse approach is possible, namely
the construction of the element partition tree based on the struc-
ture of the mesh [13, 8], and elimination of matrix rows by

*e-mail: paszynsk@agh.edu.pl

Manuscript submitted 2017-08-20, revised 2018-03-09, initially accepted
for publication 2018-04-30, published in December 2018.

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 6, 2018
DOI: 10.24425/bpas.2018.125938

DEEP LEARNING: THEORY AND PRACTICE

908

A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński

Bull. Pol. Ac.: Tech. 66(6) 2018

the coefficient of the basis function approximating the solu-
tion, called the degree of freedom), “flops per dof’’, resulting
from the execution of the multi-frontal solver algorithm over
the uniform IGA-FEM grids. Next, we introduce an algorithm
that uses the estimated number of flops per dof to propose the
locations of the C0 separators between patches of elements. The
proposed algorithm has O(NlogN) computational complexity
with respect to the number of degrees of freedom N. We show
that the separators selected by our algorithm allow reducing the
computational cost of the multi-frontal solver algorithm. We
conclude the paper with a sequence of numerical experiments.

We focus on the optimization of the sequential in-core
multi-frontal solver [5‒7], although the C0 separators obtained
from our algorithm can be possibly utilizes to speed up shared-
memory [31‒33] or distributed-memory [9‒11] implementa-
tions as well. This will be the topic of our future work.

The structure of the paper is the following. We start from
introducing the idea of the refined isogeometric analysis in Sec-
tion 2. Next, we present the algorithm for construction of the
element partition trees in Section 3. Later, in Section 4, we de-
rive the mathematical formulas for the estimation of the number
of flops per dofs. In Section 5 we introduce the algorithm for
selection of the locations of the separators between patches of
elements. Finally, we estimate the computational complexity in
Section 6 and we conclude the paper after the numerical results
presented in Section 7. We also present an Appendix describing
the implementation of our flops estimation package.

2. Idea of the refined isogeometric analysis

In this section, we introduce the idea of the refined isogeometric
analysis on a simple one-dimensional example. Let us consider
a sixteen finite elements, and cubic B-splines. In such the case,
we have four B-spline basis functions per each element. All
these four B-spline basis functions overlap, so if we generate
element frontal matrix, with rows and columns associated to
the four local B-splines, the element frontal matrix is full. The
entries in the matrix represent interactions between the B-spline
basis functions, which overlap. All the entries in the frontal
matrix are non-zeros, and the values depend on the weak for-
mulation of the PDE being solved. This means that the local
element matrices are of the size four times four, and they are
full of non-zero entries, as it is presented in Fig. 1.

If we define the cubic B-spline basis functions over these
sixteen finite elements, the local element matrices overlap to the
greatest extent, as it is presented in Fig. 2. This is because the
B-spline basis functions of order p spread over p + 1 elements,

and they overlap with three other B-splines. In our case, we ob-
tain the global matrix of size N = 16 + 3 = 19, with dense diag-
onals. This is because each element local matrix overlaps with
other matrices by three rows and columns. The IGA matrices
are smaller than rIGA and FEM matrices, but they are denser.

On the other hand, if we define the hierarchical polynomials
of the third order, like the Lagrange polynomials, over these
sixteen finite elements, the element local matrices will overlap
minimally, as it is presented in Fig. 3. When we look at the

Fig. 1. 16 finite elements with 16 element matrices

Fig. 2. One-dimensional discretization with standard finite element
method with cubic polynomials

Fig. 3. One-dimensional discretization with standard finite element
method with cubic polynomials

909

Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers

Bull. Pol. Ac.: Tech. 66(6) 2018

basis functions, it is equivalent to perfoming knot insertion on
the original B-spline to obtain C 0 separators. Please note that
by introducing these C0 separators we have enriched the space
of the basis functions, so the approximability of the new system
is better. The higher continuity cubic B-splines cannot approxi-
mate with zero error the cubic functions with a corner. The basis
refined with C0 separators can approximate with zero error the
functions with the corners located in between the finite ele-
ments. Both cubic B-spline basis and the refined cubic B-spline
basis functions can approximate with zero error a highly con-
tinuous polynomial of the third order. If we look at the global
matrix, we see that element matrices overlap just by one row
and column. Thus, we have largest matrix N = 3¤16 + 1 = 49,
but the diagonals are sparse, as it is presented in Fig. 3.

Summing up, the traditional FEM generates larger but
sparser matrices, and IGA method generates smaller but denser
matrices. Moreover, IGA provides higher global continuity of
the solution, but it cannot approximate C0 functions.

Now, the refined isogeometric analysis (rIGA) comes into
the picture. We can make a compromise between the size of the
matrix and its density. Introducing C0 separators every four ele-
ments, we obtain the matrix that is smaller than traditional finite
element method, and sparser than isogeometric finite element
method. This is illustrated in Fig. 4. The rIGA matrices are the
compromise between small but dense IGA matrices, and large
but sparse FEM matrices.

tained by introducing a knot-vector [0 0 0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 16 16] to any software compatible
with IGA technology. We introduce such knot-vector for every
direction x, y, and z. The repetition of the first and the last
knot-points three times implies that quadratic B-splines are
used uniformly over the mesh in every direction, x, y, and z.
The introduced B-splines have C1 continuity along the entire
mesh. Another example involves the knot-vector defining cubic
B-splines. Here we have [0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 16 16 16], and the cubic B-splines have C2 continuity
along the entire mesh, in a direction where we have introduced
this knot-vector. In general, the repetition of the knot-point
p + 1 times in the beginning and the end of the knot-vector
implies B-splines basis functions of the order p. The introduced
B-splines has C p ¡ 1 continuity across the entire mesh, in the
direction defined by the knot-vector.

Now, we can partition our 3D patch of elements into eight
patches with 8£8£8 elements. The partition is performed by
repeating the knot-points on the interface between the sub-
patches. For example, in the first knot-vector defining qua-
dratic B-splines, we repeat the knot-point 8 one time [0 0 0 1
2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 16 16]. In the second
knot-vector defining the cubic B-splines, we need to repeat the
central knot-point three times [0 0 0 0 1 2 3 4 5 6 7 8 8 8 9 10
11 12 13 14 15 16 16 16 16]. Such the repetition of knot-points
has the following interpretation. It reduces the global continuity
of the B-splines basis functions from C p ¡ 1 down to C0 at the
point. It is equivalent to the introduction of one additional basis
functions, the so-called C0 separator, at the point of the repeated
knots. For more details on the knot-vectors interpretation we
refer to [14].

The computational cost of the multi-frontal direct solver
executed on rIGA matrices is lower than for corresponding IGA
and FEM matrices. We would like to emphasize that this idea
of the reduction of the computational cost of the direct solver
has been already presented in [27] in the context of sequential
direct solvers. However, the paper [27], lacks the heuristic algo-
rithm for selection of the location of the C0 separators between
parches of elements. We will propose such algorithm in the
following sections.

3. Generation of the element partition tree
based on two or three-dimensional mesh

Having the two or three-dimensional mesh prescribed by the
knot vectors, we define first the algorithm generating the ele-
ment partition tree (EPT). The EPT is a binary tree. Each leaf
of the EPT has one finite element assign. The parent nodes of
EPT have lists of finite elements assign. These lists are obtained
by merging lists from the children nodes. A formal definition
can be found in [13].

The algorithm is introduced with a pseudo-code below. The
input to the algorithm is the list of all elements forming the two
or three-dimensional mesh.

We provide the pseudo-code below. We first call the
create_root(root) routine which creates the root node,

Fig. 4. One-dimensional discretization with refined isogeometric
analysis with cubic B-splines and C0 separators

The idea presented in this section can be generalized into
two or three-dimensional tensor product structure grids.

Let us consider a three-dimensional patch with 16£16£16
elements, with quadratic B-splines. Such the patch can be ob-

910

A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński

Bull. Pol. Ac.: Tech. 66(6) 2018

prepares the list of all elements, from the first one nbeg = 1 to
the last one nend = number_of_elements. We assume that all
the elements in the mesh are numbered in a continuous way and
that each element from the mesh has its unique identifier. The
list of all elements is stored in the root node. The create_tree
routine passes the root node with the list of all elements to the
bisection routine, which constructs the element partition tree
in a recursive manner. It sorts the elements along the longest di-
rection, by call sort_elements_along_direction. Then, it
partitions the list of elements into two equally numbered parts,
along with the selected directions, by calling weighted_half.
Next, the two children nodes are created, and the two con-
structed sub-lists are assigned to the left and the right children
accordingly. The routine create_root is called recursively
until only one element remains in the sub-list.

node routine create_tree(root)
nbeg = 1; nend = number_of_elements;

nlevel = 1;

create root node;
assign elements [nbeg,nend] to root node;
call bisection(nbeg,nend,root,nlevel)
return root

recursive subroutine bisection
(ibeg,iend,node,ilevel)

if(ibeg = = iend) then
assign element [ibeg] to node;
return;

endif
direction = (1,0,0);

sizex = sum_weights(direction,ibeg,iend);

direction = (0,1,0);

sizey = sum_weights(direction,ibeg,iend);

direction = (0,0,1);

sizez = sum_weights(direction,ibeg,iend);

if(sizex = = min(sizex,sizey,sizez) then
direction = (1,0,0); size = sizex;

else if(sizey = = min(sizex,sizey,sizez) then
direction = (0,1,0); size = sizey;

else if(sizez = = min(sizex,sizey,sizez) then
direction = (0,0,1); size = sizez;

Fig. 5. C p ¡ 1 separators and elimination of two elements in 1D

endif
call sort_elements_along_direction

(direction,ibeg,iend)

call weighted_half
(direction,ibeg,iend,size,ihalf);

create two children nodes, child1, child2
make child1 and child2 children of node;
if(ihalf>ibeg) then
nbeg = ibeg; nhalf = ihalf;

nlevel = ilevel + 1;

assign elements [nbeg,nhalf] to child1;
call bisection(nbeg,nhalf, child1,nlevel

endif
if(ihalf<iend) then
nend = iend; nhalf = ihalf + 1;

nlevel = ilevel + 1;

assign elements [nhalf,nend] to child2;
call bisection(nhalf,nend, child2,nlevel

endif

We assign weights to elements and use these weights to
partition the elements recursively. The elements are partitioned
into two halves in such a way, that elements weights on both
sides are almost identical (equal if possible). We assume that
the separator is a straight line (in 2D) or a plane (in 3D). This
is because the C0 separators on uniform grids can be only in-
troduced along the x, y and z (in 3D) axes. There are different
weights for each direction, x, y and z. The weights reflects the
locations of the separators between elements along a given di-
rection. To define the weights correctly, we use the following
intuition. We analyze the complexity of elimination of elements
in 1D, as it is presented in Fig. 5.

Let us focus on B-splines of order p. First, we assume that
there are no separators between elements, and B-splines have
C p ¡ 1 continuity. This is illustrated in Fig. 5 for cubic B-splines.
In such the case, the element matrices overlap on the block
O(p2). Each element contributes now to elimination of one
(p + 1)£(p + 1) block. When we have n elements, the com-
plexity of processing of all element O(np2 + p3), so the com-
plexity per element is O(p2).

Let us assume that we have a patch of two times two finite
elements with basis functions obtained from tensor products

911

Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers

Bull. Pol. Ac.: Tech. 66(6) 2018

of one dimensional B-splines defined by the knot vectors
{0, 0, 0, 1, 2, 2, 2}£{0, 0, 0, 1, 2, 2, 2}. This mesh is illustrated
in Fig. 6.

Our implementation of the algorithm generates the EPT and
stores the EPT in the following format. In our case, we have
a total of 16 basis functions, and there are no nodes in the mesh,
only the anchors where the B-spline basis functions are assigned
and where they have maximum values. We assume that each
node is one B-spline basis function, and there is one degree
of freedom per node. We also use this assumption for higher
order isogeometric grids. We also need to assign B-splines to
elements where they spread their supports.

The syntax of the tree file files/tree is desrcibed in Appendix.

4. FLOPS estimator

The EPT file is the input for the flops estimator algorithm that
computes a number of dof per degree of freedom (related to
B-spline basis functions). In the following section, we define
the formulas used for the flops estimation.

4.1. Equations for computing number of FLOPs per degree
of freedom. Multi-frontal solver driven by partitioning tree
maintains matrix M associated with every node of the tree. The
matrix represents coefficients for degrees of freedom (DOFs)
that are divided into two main parts:
1. DOFs that will be fully eliminated in given tree node.
2. DOFs being a part of Schur complement and will be merged

into the matrix associated with the parent of a given tree node.

The arity of the above groups will be denoted as a and b for the
number of DOFs to be eliminated and size of Schur complement
respectively.

Therefore, content of the matrix M can be splitted into four
main submatrices as it was illustrated by equation (1):

 Mn£n = 
Aa£a Ba£b

Cb£a Db£b
 (1)

where: n = a + b.
In every node of the tree, solver computes Schur comple-

ment. Accounting above assumptions the Schur complement in
our current notation can be expressed using equation (2):

 D = D ¡ CA–1B . (2)

Above we have one LU or Cholesky factorization, backward
and forward substitution, one matrix by matrix multiplication
C£(A–1B) and one substraction. The costs for all of these op-
erations will be described in the following subsections1.

4.2. Factorization. Factorization is performed only on matrix
Aa£a. Exact cost of LU factorization is given by equation (3).

 f lu(n) =  2
3

n3 ¡ 1
2

n2 + 5
6

n (3)

In case of symmetric, positively-definite matrix, we can use
Cholesky decomposition which cost is given by the equation (4).

 f chol(n) =  1
3

n3 ¡ 1
2

n2 + 1
6

n (4)

In case of LU factorization (typical for nonsymmetric or
not positively-definite matrices) our cost expressed in terms of
size of matrix A will be:

 f lu(a) =  2
3

a3 ¡ 1
2

a2 + 5
6

a (5)

4.3. Backward and forward substitution. To compute: A–1B
we need only to use factors of matrix A, that is, for LU factor-
ization we will compute:

A–1B = U –1L–1B

and for Cholesky decomposition:

A–1B = (LT)
–1L–1B.

The cost for LU factorization is

f (n) = RHS(n2 ¡ n).

1 www.netlib.org/lapack/lawnspdf/lawn41.pdf, page 120

Fig. 6. Exemplary 2D IGA-FEM mesh. Global numbering of quadratic
B-splines

912

A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński

Bull. Pol. Ac.: Tech. 66(6) 2018

What directly leads to complexity of computing A–1B expressed
in sizes of matrices A and B.

 fbfsjlu(a, b) = b(2a2 ¡ a) (6)

and for Cholesky factorization we have similar equation

 fbfsjchol(a, b) = 2ba2. (7)

4.4. Matrix-by-matrix multiplication. Number of floating-point
operations for multiplication of two matrices of well-known
sizes is trivial, assuming Cb£a and (A–1B)a£b we have:

 fmult(a, b) = 2ab2. (8)

4.5. Substraction step. The last stage is subtraction step that in
case of two matrices of size b£b the total number of FLOPS is:

 f sub(b) = b2. (9)

4.6. Merging step. Transferring data towards the root of the
partitioning tree requires additional b2 additions. We can take
them also into consideration:

 fmerge(b) = b2. (10)

4.7. Estimation of the total number of FLOPS in partitioning
tree node. Finally we can sum up all of the above complexities
to get total number of FLOPS for LU (11):

f (a, b) = f lu(a) + fbfsjlu(a, b) + fmult(a, b) +
f (a, b) = + f sub(b) + fmerge(b) = 

f (a, b) =  2
3

a3 ¡ 1
2

a2 + 5
6

a + b(2a2 ¡ a) +

f (a, b) = + 2ab2 + 2b2.

 (11)

Similarly, for Cholesky decomposition, the total number of
FLOPS per matrix is given by the following equation (12):

f (a, b) = fchol(a) + fbfsjchol(a, b) + fmult(a, b) +
f (a, b) = + fsub(b) + ftrans(b) = 

f (a, b) =  1
3

a3 ¡ 1
2

a2 + 1
6

a + 2ba2 + 2ab2 + 2b2.

 (12)

4.8. FLOPS distribution. Computing number of FLOPS is
trivial when comparing to the problem of assigning FLOPS to
unknowns. The important goal is to distribute FLOPS as equally
as possible. Equality means that every operation performed on
submatrix should modify unknowns associated with both rows
and columns of given block. This rule will be later referenced
as “rule of equality’’.

Local system of linear equations is constructed as follows:

Aa£a Ba£b

Cb£a Db£b

φ1

φ2

φa

φa + 1

φa + b ¡ 1

φa + b

  =  b–.

Please notice that this notation uses a local enumeration
of DOFs. Estimator traces mappings between local and global
enumerations and fill flops array accordingly.

Assuming LU factorization, the first a variables will be to-
tally eliminated and number of flops mapped to any of them is
given by equation (13):

 f fact(φi)
(a) =  2

3
a3 ¡ 1

2
a2 + 5

6
a. (13)

For i 2 {1, …, a}. Equation (13) denotes cost of factorization
related to unknown φi.

This is implication of equation (5) divided by number of un-
knowns (a). Similarly, we can derive the equation for Cholesky
factorization.

This approach will give us a fair division of the number of
flops between all of the unknowns involved in factorization step.

Situation becomes more complicated in terms of backward
and foward substitution step presented in equation (6) and
computing CA–1B (8). Estimator should divide number of steps
equally between all of the degrees of freedom. Equation (14)
shows mapping between flops and unknowns, trying to follow
“near-equal’’ rule:

fbfsjlu(a, b) + fmult(a, b) = ab(2a ¡ 1) + 2ab2 = 

= 
For DOFs related to Schur complement

2b(a, b)  + 
For DOFs that will be fully eliminated

ab(2a ¡ 1) . (14)

Computing D = D ¡ CA–1B is simple and affects only de-
grees of freedom belonging to Schur complement.

Hence:

f total(φi) = 

= 
4a2 ¡ 3a + 5

6
 + b(2a ¡ 1) for i 2 {1, …, a}

(2a + 2)b for i 2 {a + 1, …, a + b}
.
 (15)

Please notice that rounding fraction up results in an over-
estimation of FLOPS.

913

Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers

Bull. Pol. Ac.: Tech. 66(6) 2018

The FLOPS estimation algorithm executed for the mesh
presented in Fig. 6 generates the following output file. Please
notice that the degrees of freedom are numbered from 0.

10 = 9

11 = 91

12 = 91

13 = 9

14 = 200

15 = 264

16 = 264

17 = 200

18 = 200

19 = 264

10 = 264

11 = 200

12 = 9

13 = 91

14 = 91

15 = 9

Our implementation of the FLOPS estimator generates also
the output files in the VTK format.

5. Finding location of separators based on
the flops per node map

To estimate the locations of the separators, we sum up the number
of flops per 1D B-splines along particular axis. For example, in
our exemplary mesh from Fig. 6, we have a tensor product of two
knot vectors {0, 0, 0, 1, 2, 2, 2}£{0, 0, 0, 1, 2, 2, 2}. This implies
tensor product structure of four quadratic B-splines, along the x
and y axis. Thus, we sum up the flops along the x and y axis. The
result is 9 + 91 + 91 + 9 = 200, 200 + 264 + 264 + 200 = 928,
200 + 264 + 264 + 200 = 928, and 9 + 91 + 91 + 9 = 200,
the same for rows and for columns. We introduce the separator
if there is a high local jump in the summation of flops, two
orders (in 2D) and three orders (in 3D) of magnitude higher.
We do not have such the local jumps here, so in this case the
C0 separator is not needed.

6. Computational complexity of the heuristic
algorithm for selection of C 0 separators

The computational complexity of the algorithm is equal to the
sum of the computational complexities of the following com-
ponents
● Algorithm constructing the element partition tree. This algo-

rithm partitions recursively a list of size Ne, constructing an
equally weighted binary tree with weighted mesh elements
at leafs. The computational complexity of this algorithm is
O(NelogNe) where Ne is the number of elements.

● The algorithm estimating the number of flops by post-order
traversal of the element partition tree. The algorithm has to
visit all the nodes of the element partition tree, and update

the cost for all the degrees of freedom The number of visited
nodes is O(NelogNe), and the number of degrees of freedom
updated is O(N).

● Finally the algorithm that sums up the costs in rows and
columns. It has to visit all the degrees of freedom, so the
computational complexity is O(N).
For the case of IGA-FEM, O(Ne) = O(N), so the total com-

putational complexity of the algorithm is O(NlogN).

7. Numerical results

We have executed our algorithm on representative two and
three-dimensional grids with cubic B-splines. We plot the map
of flops per node using our implementation of the interface with
ParaView. When plotting the maps of flops from ParaView, it
is necessary to setup Coloring = Results, Representation to ei-
ther = Slice for 2D or = SurfacewithEdges. It is also necessary
to ‛Use log scale when mapping data to colors’. The map of
flops per nodes is presented in Figs 7 and 8.

The generated maps of flops per mesh nodes enable to iden-
tify the locations of separators. From the plots we can read the
location of separators are red lines, visible on logarithmic scale.
We can discover them by summing up the flops along x, y and

Fig. 7. Screenshot from ParaView for 2D mesh

Fig. 8. Screenshot from ParaView for 3D mesh

914

A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński

Bull. Pol. Ac.: Tech. 66(6) 2018

z axis (in 3D). This can be done in a linear cost, browsing all
the mesh nodes. The local high jumps in the sum denotes the
locations of the separators.

We have executed the sequential state-of-the-art MUMPS
solver with METIS on the grids with estimated location of the
separators. We have compared the resulting execution times
for different location of the separators, as well as for the two
border cases, the one corresponding to the FEM with Lagrange
polynomials (which corresponds to separators between all ele-
ments, and to the IGE-FEM with tensor product B-spline poly-
nomials (which corresponds to no separators). This is illustrated
in Figs 9‒12, where we have used the summation algorithm
to find the optimal location of separators. Notice that for 3D
quintic B-splines for 1283 mesh it is not possible to run sequen-
tial simulation since MUMPS solver runs out of memory, even
for 128 GB of available RAM. Thus, the red curve in Fig. 12
is our graphical estimate only. However, the flops estimator
finds the optimal location of the separator, since the estimation
does not require large amount of memory (it does not produce

the fill-in, new non-zero entries during the factorization, which
takes a lot of memory).

8. Conclusions

In this paper, we presented a heuristic algorithm for selection
of the location of C 0 separators between patches of elements
for IGA-FEM simulations on uniform 2D or 3D patches of
elements. The C0 separators allow reducing the computational
cost of the multi-frontal direct solvers executed on the patches
of elements, up to two orders of magnitude. Such the patches
of elements are natural for IGA-FEM, where the geometrical
objects are partition into parts, with each part mapped into the
master patch of elements, with the geometry prescribed in terms
of B-splines [14] or NURBS [30]. Thus, our method can be
directly incorporated into CAD packages executing IGA-FEM
simulations with multi-frontal direct solvers. The multi-frontal
solvers are still used for badly conditioned problems, or as the

Fig. 9. The speedup of the multi-frontal solver executed on the 2D
mesh with cubic B-splines with C0 separators introduced

Ti
m

e
[s

]

Location of C0 separator

Fig. 10. The speedup of the multi-frontal solver executed on the 2D
mesh with quintic B-splines with C0 separators introduced

Ti
m

e
[s

]

Location of C0 separator

Fig. 12. The speedup of the multi-frontal solver executed on the 3D
mesh with quintic B-splines with C0 separators introduced

Ti
m

e
[s

]

Location of C0 separator

Fig. 11. The speedup of the multi-frontal solver executed on the 3D
mesh with cubic B-splines with C0 separators introduced

Ti
m

e
[s

]

Location of C0 separator

915

Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers

Bull. Pol. Ac.: Tech. 66(6) 2018

preconditioners for iterative solvers, as well as the kernels for
multi-grid solvers. The weights introduced in the algorithm
enable the usage of different orders of B-splines in different
directions over the patches of elements. The computational
complexity of the flops estimating algorithm is O(NlogN).
The complexity of this algorithm is similar to the complexity
of the algorithm generating the ordering for the multi-frontal
solver, and it is much lower than the computational complexity
of factorization itself, which is O(N 1.5) in 2D and O(N 2) in 3D.
The introduction of the C0 separators reduces the constant in
front of the complexity formula. Our future work will involve
the extension of the algorithm to the parallel multi-frontal direct
solvers, or for the correction of the computational grids where
some C0 separators have been already introduced.

Acknowledgements. The work was supported by the National
Science Centre, Poland, grant no. DEC-2015/17/B/ST6/01867.

References
 [1] T.J.R. Hughes, The Finite Element Method. Linear Statics and

Dynamics Finite Element Method Analysis, Dover (2000).
 [2] O.C. Zienkiewicz, R.Taylor, and J.Z. Ziu, The Finite Element

Method: Its Basis and Fundamentals, Elsevier, 7th edition
(2013).

 [3] L. Demkowicz, Computing with hp adaptive finite element
method. Part I, CRC Press, Boca Raton, FL. (2006).

 [4] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz,
and A. Zdunek, Computing with hp adaptive finite element
method. Part II, CRC Press, Boca Raton, FL (2007).

 [5] I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for
Sparse Matrices, Oxford University Press, Inc., New York, NY,
(1986).

 [6] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite
sparse symmetric linear, ACM Transations on Mathematical
Software, 9(3), 302–325 (1983).

 [7] I.S. Duff and K. Reid, The multifrontal solution of unsymmetric
sets of linear systems, SIAM Journal of Scientific Statistical
Computing, 5, 633–641 (1984).

 [8] M. Paszyński, Fast solvers for mesh-based computations, Taylor
& Francis, CRC Press, (2016).

 [9] P.R. Amestoy and I.S. Duff, Multifrontal parallel distributed
symmetric and unsymmetric solvers, Computer Methods in Ap-
plied Mechanics and Engineering, 184 501‒520 (2000).

 [10] P.R. Amestoy, I.S. Duff, J. Koster, and J.Y. L’Excellent, A fully
asynchronous multifrontal solver using distributed dynamic
scheduling, SIAM Journal of Matrix Analysis and Applications,
1(23) 15–41 (2001).

 [11] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet,
Hybrid scheduling for the parallel solution of linear systems,
Computer Methods in Applied Mechanics and Engineering,
2(32), 136–156 (2001).

 [12] A. George and J.W.-H. Lu, “An automatic nested dissection al-
gorithm for irregular finite element problems”, SIAM Journal of
Numerical Analysis 15, 1053–1069 (1978).

 [13] H. AbouEisha, V.M. Calo, K. Jopek, M. Moshkov, A. Paszńska,
M. Paszyński, and M. Skotniczny, Element partition trees for
hrefined meshes to optimize direct solver performance. P. 1, Dy-
namic programming, International Journal of Applied Mathe-
matics and Computer Science, 27(2) (2017) 351–365.

 [14] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs, Isogeometric Analysis:
Toward Unification of CAD and FEA JohnWiley and Sons, (2009).

 [15] L. Dedè, T.J.R. Hughes, S. Lipton, V.M. and Calo, Structural
topology optimization with isogeometric analysis in a phase field
approach, USNCTAM2010, 16th US National Congree of The-
oretical and Applied Mechanics.

 [16] L. Dedè, M. J. Borden, and T.J.R. Hughes, Isogeometric anal-
ysis for topology optimization with a phase field model, ICES
REPORT 11‒29, The Institute for Computational Engineering
and Sciences, The University of Texas at Austin (2011).

 [17] R. Duddu, L. Lavier, T.J.R. Hughes, and V.M. Calo, A finite
strain Eulerian formulation for compressible and nearly incom-
pressible hyper-elasticity using high-order NURBS elements,
International Journal of Numerical Methods in Engineering,
89(6) (2012) 762‒785.

 [18] M. Łoś, M. Paszyński, A. Kłlusek, and W. Dzwinel, Applica-
tion of fast isogeometric L2 projection solver for tumor growth
simulations, Computer Methods in Applied Mechanics and En-
gineering, 316 (2017) 1257‒1269.

 [19] H. Gómez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes, Isogeo-
metric analysis of the Cahn-Hilliard phase-field model, Com-
puter Methods in Applied Mechanics and Engineering 197
(2008) 4333–4352.

 [20] H. Gómez, T.J.R. Hughes, X. Nogueira, and V.M. Calo, Isogeo-
metric analysis of the isothermal Navier-Stokes-Korteweg equa-
tions. Computer Methods in Applied Mechanics and Engineering
199 (2010) 1828‒1840.

 [21] S. Hossain, S.F.A. Hossainy, Y. Bazilevs, V.M. Calo, and
T.J.R. Hughes, Mathematical modeling of coupled drug and
drug-encapsulated nanoparticle transport in patientspecific cor-
onary artery walls, Computational Mechanics, doi: 10.1007/
s00466‒011‒0633‒2, (2011).

 [22] M.-C. Hsu, I. Akkerman, and Y. Bazilevs, High-performance
computing of wind turbine aerodynamics using isogeometric
analysis, Computers and Fluids, 49(1) (2011) 93‒100.

 [23] Y. Bazilevs, L. Beirao da Veiga, J.A. Cottrell, T.J.R. Hughes, and
G. Sangalli, Isogeometric analysis: Approximation, stability and
error estimates for h-refined meshes, Mathematical Methods and
Models in Applied Sciences, 16 (2006) 1031– 1090.

 [24] Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali,
and G. Scovazzi, Variational multiscale residual-based turbulence
modeling for large eddy simulation of incompressible flows, Com-
puter Methods in Applied Mechanics and Engineering 197 (2007)
173‒201.

 [25] Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes: Isogeo-
metric fluid-structure interaction analysis with applications to
arterial blood flow, Computational Mechanics 38 (2006).

 [26] K. Chang, T.J.R. Hughes, and V.M. Calo, Isogeometric variational
multiscale large-eddy simulation of fully-developed turbulent
flow over a wavy wall, Computers and Fluids, 68 (2012) 94‒104.

 [27] D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, N. Collier, and
V.M. Calo, The value of continuity: Refined isogeometric anal-
ysis and fast direct solvers, Computer Methods in Applied Me-
chanics and Engineering, 316 (2017) 586‒605.

 [28] B. Janota and M. Paszyński, Algorithms for construction of El-
ement Partition Trees for Direct Solver executed over h refined
grids with B-splines and C0 separators, Procedia Computer Sci-
ence, 108 (2017) 857‒866.

 [29] B. Janota and A. Paszyńska, Automatic algorithms for the con-
struction of element partition trees for isogeometric finite ele-
ment method, accepted to International Conference on Man-Ma-
chine Interactions (ICMMI) (2017), Kraków, Poland.

916

A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński

Bull. Pol. Ac.: Tech. 66(6) 2018

 [30] L. Piegl, and W. Tiller, The NURBS Book (Second Edition),
Springer-Verlag New York, Inc., (1997).

 [31] S. Fiałko, “A block sparse shared-memory multifrontal finite
element solver for problems of structural mechanics”, Com-
puter Assisted Mechanics and Engineering Science 16, 117– 131
(2009).

 [32] S. Fiałko, “The block subtracture multifrontal method for solu-
tion of large finite element equation sets”, Technical Transac-
tions, 1-NP, 8, 175–188 (2009).

 [33] S. Fiałko, “PARFES: A method for solving finite element linear
equations on multi-core computers”, Advanced Engineering Soft-
ware 40(12), 1256–1265 (2010).

9. Appendix: Implementation of the flops
estimator

In this section, we describe the software package for estimation
of the number of floating-point operations on two- and three-di-
mensional patches of elements utilized in isogeometric finite
element method computations. The code can be obtained from
http://www.ki.agh.edu.pl/FastSolvers/rIGA/rIGA_clean.tar.gz}
The code is also located at https://bitbucket.org/agha2s/riga/.

The software package has the following components:
● Main component managing the execution,
● Generator of the element partition tree,
● FLOPS estimator,
● Graphics processor.

The dependency between modules is presented in Fig. 13.
The data files generated by the modules are the following:

● files/tree – the element partition tree generated by the first
module, and read by the second module,

● files/analysed – map of flops per node generated by second
module,

● files/pv_step_1.vti – input for ParaView with plot of the map
generated by the second module.

● Graphics processor
The code has the following source files:

● main.f – main routine controlling the execution and calling
other modules. The required input is files/knots;

● partition_engine.f – module generating the element parti-
tion tree. The input for the module is the patch of elements
created in main routine. The output from the module is the
element partition tree files/tree;

● flops_estimator_ f /¤.f 95 – fortran module performing the
flops estimation. The input for the module is is the element

partition tree files/tree. The output is the map of flops per
dof files/analysed;

● graphics_engine.f – module generating the ParaView input
file. The input is the map of flops per dof files/analysed. The
output is the paraview file files/pv_step_1.vti;

● other routines ¤. f – are auxiliary and are necessary for the
compilation;

● makefile and flops_estimator_ f /Makefile – makefiles for
the compilation.
The structure of the element partition tree is stored in files/tree

file. The file contains the following data:
● map of dofs per mesh node. In the case of IGA-FEM we

assign one node per one B-spline basis function,
● list of nodes per finite element,
● tree of recursive partitions of the finite element mesh.

The example of the element partition tree for the mesh de-
scribed in Fig. 6 is provided below:

16 // number of nodes

11 1 // 1 dof per B-spline 1

12 1 // 1 dof per B-spline 2

13 1 // 1 dof per B-spline 3

14 1 // 1 dof per B-spline 4

15 1 // 1 dof per B-spline 5

16 1 // 1 dof per B-spline 6

17 1 // 1 dof per B-spline 7

18 1 //

19 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

4 // number of elements

// element number 1, refinement level 1,

// nodes: 1,2,3, 5,6,7,9,10,11

// element 1 on this level, 9

1 1 1 9 1 2 3 5 6 7 9 10 11

// element number 2, refinement level 1,

// element 2 on this level,

// 9 nodes: 2,3,4,6,7,8,10,11,12

2 1 2 9 2 3 4 6 7 8 10 11 12

// element number 3, refinement level 1,

Fig. 13. Dependency between modules and data files generated

917

Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers

Bull. Pol. Ac.: Tech. 66(6) 2018

//element 3 on this level,

// 4 nodes: 5,6,7, 9,10,11, 13,14,15

3 1 3 9 5 6 7 9 10 11 13 14 15

// element number 4, refinement level 1,

// element 4 on this level,

// 9 nodes: 6,7,8, 10,11,12, 14,15,16

4 1 4 9 6 7 8 10 11 12 14 15 16

7 // number of nodes in element partition tree

// tree node id = 1,

// 4 elements: (1, 1) (1, 2) (1, 3) (1, 4)

// pointers to \revision{children} nodes 2, 3

1 4 1 1 1 2 1 3 1 4 2 3

// tree node id = 2, 2 elements: (1, 1) (1, 2),

2 2 1 1 1 2 4 5

// pointers to \revision{children} nodes 4, 5

// tree node id = 3, 2 elements: (1, 3) (1, 4),

// pointers to \revision{children} nodes 6, 7

3 2 1 3 1 4 6 7

// tree node id = 4, 1 element: (1, 1) leaf

4 1 1 1

// tree node id = 4, 1 element (1, 2) leaf

5 1 1 2

// tree node id = 4, 1 element (1, 3) leaf

6 1 1 3

// tree node id = 4, 1 element (1, 4) leaf

7 1 1 4

The code does not need any libraries to run. The compilation
is straightforward. It requires to invoke make in main directory
and in flops_estimator_ f directory. The output files are stored
in files directory that needs to be created.

The mesh generator is incorporated into the software. Let
us refer to the patch of two times two finite elements with basis

functions obtained from tensor products of one dimensional
B-splines defined by the knot vectors {0, 0, 0, 1, 2, 2, 2}£
£{0, 0, 0, 1, 2, 2, 2}, presented in Fig. 6. The knot vectors are
defined in the main.f routine by preparing knot vectors. To
define the 2D mesh like in our example we need to proceed as
follows: To define the 3D mesh, we just provide nz > 1.

c INPUT PARAMETERS

px = 2

nx = 3

py = 2

ny = 3

pz = 2

nz = 1

c ...

c ...prepare the problem dimensions

allocate(Ux(nx + px + 2)) !knot vector

allocate(Uy(ny + py + 2)) !knot vector

allocate(Uz(nz + pz + 2)) !knot vector

c fill the knot vector for x

Ux(1:px + 1) = 0.d0

Ux(nx + 2:nx + px + 2) = 1.d0

do i = px + 2,nx + 1

Ux(i) = real(i-px-1)/real(nx-px + 1)

enddo

nelemx = CountSpans(nx,px,Ux)

c same code for ny,py,py

c ...\\

c same code for nz,pz,pz

c ...

However, our code can be incorporated into any software
application working with IGA-FEM, using the knots vector
standard.

