PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topological classes of statically determinate beams with arbitrary number of supports under the most unfavourably distributed load

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with topological classes of statically determinate beams with an arbitrary number of pin supports. The beams carry piece-wisely distributed loads which are placed in such a way that bending moment values are extreme at any section. For such loads, it is sufficient to consider only two load cases with alternate spans uniformly loaded. Each beam with a fixed topology is subjected to geometrical optimization with the absolute maximum moment as the objective function. Exact formulas for optimal values of geometrical parameters are found for all topologies. An equality criterion between minimum values of the objective function is used as an equivalence relation. On the basis of this relation, the set of all topologies is divided into equivalence topological classes. Typical features of these classes are found and discussed.
Rocznik
Strony
257--269
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Bialystok University of Technology, Faculty of Architecture, Białystok, Poland
Bibliografia
  • 1. Bojczuk D., Szteleblak W., 2006, Application of finite variations to topology and shape optimization of 2D structures, Journal of Theoretical and Applied Mechanics, 44, 2, 323-349
  • 2. Bojczuk D., Mróz Z., 1998, On optimal design of supports in beam and frame structures, Structural Optimization, 16, 47-57
  • 3. Bryant R.H., Heinlein S.J., 1994, Optimal design of beams for moving loads with a deflection constraint, International Journal of Non-Linear Mechanics, 29, 2, 205-216
  • 4. Choi I., Lee J.S., Choi E., Cho H., 2004, Development of elastic damage load theorem for damage detection in a statically determinate beam, Computers and Structures, 82, 29/30, 2483-2492
  • 5. Darkov A., Kuznetsov V., 1970, Structural Mechanics, Gordon and Breach, New York
  • 6. Friswell M.I., 2006, Efficient placement of rigid supports using finite element models, Communications in Numerical Methods in Engineering, 22, 205-213
  • 7. Gambhir M.L., 2009, Fundamentals of Solid Mechanics: A Treatise on Strength of Materials, PHI Learning, New Delhi
  • 8. Gambhir M.L., 2011, Fundamentals of Structural Mechanics and Analysis, PHI Learning, New Dehli
  • 9. Golubiewski M., 1995, Directed graphs as the generators of the whole set of Gerber beams, Mechanism and Machine Theory, 30, 7, 1013-1017
  • 10. Hartsuijker C., Welleman J.W., 2006, Engineering Mechanics: Equilibrium, Kluwer Academic Publishers, New York
  • 11. Imam M.H., Al-Shihri M., 1996, Optimum topology of structural supports, Computers and Structures, 61, 147-154
  • 12. Jang G.W., Shim H.S., Kim Y.Y., 2009, Optimization of support locations of beam and plate structures under self-weight by using a sprung structure model, Journal of Mechanical Design, 131, 2, 021005.1-021005.11
  • 13. Karihaloo B.L., Kanagasundaram S., 1988, Optimum design of statically indeterminate structures subject to strength and stiffness constraints and multiple loading, Computers and Structures, 30, 3, 563-572
  • 14. Karnovsky I.A., Lebed O., 2010, Advanced Methods of Structural Analysis, Springer New York Dordrecht Heidelberg, London
  • 15. Kirsch U., 1989, Optimal topologies of structures, Applied Mechanics Reviews, 42, 8, 223-239
  • 16. Kolendowicz T., 1993, Structural Mechanics for Architects (in Polish), Arkady, Warsaw
  • 17. Kozikowska A., 2011, Topological classes of statically determinate beams with arbitrary number of supports, Journal of Theoretical and Applied Mechanics, 49, 4, 1079-1100
  • 18. Liu G.A., Huang Z.M., Gao J.L., 2009, Damage identification based on damage load influence line to statically determinate beam, Journal of Hunan University (Natural Sciences), 36, 8, 23-27
  • 19. Mayeda R., Prager W., 1967, Minimum-weight design of beams for multiple loading, International Journal of Solids and Structures, 3, 6, 1001-1011
  • 20. Mróz Z., Bojczuk D., 2003, Finite topology variations in optimal design of structures, Structural and Multidisciplinary Optimization, 25, 153-173
  • 21. Mróz Z., Rozvany G.I.N., 1975, Optimal design of structures with variable support positions, Journal of Optimization Theory and Applications, 15, 85-101
  • 22. Nowacki W., 1976, Structural Mechanics (in Polish), PWN, Warsaw
  • 23. Pedersen P., Pedersen N.L., 2009, Analytical optimal designs for long and short statically determinate beam structures, Structural and Multidisciplinary Optimization, 39, 343-357
  • 24. Pennock G.R., Alwerdt J.J., 2007, Duality between the kinematics of gear trains and the statics of beam systems, Mechanism and Machine Theory, 42, 11, 1527-1546
  • 25. Rozvany G.I.N., Bendsøe M.P., Kirsch U., 1995, Layout optimization of structures, Applied Mechanics Reviews, 48, 41-119
  • 26. Rozvany G.I.N., Yep K.M., Ong T.G., Karihaloo B.L., 1988, Optimal design of elastic beams under multiple design constraints, International Journal of Solids and Structures, 24, 4, 331-349
  • 27. Rychter Z., Kozikowska A., 2009, Genetic algorithm for topology optimization of statically determinate beams, Archives of Civil Engineering, 55, 1, 103-123
  • 28. Wang B.P., Chen J.L., 1996, Application of genetic algorithm for the support location optimization of beams, Computers and Structures, 58, 797-800
  • 29. Wang D., 2004, Optimization of support positions to minimize the maximal deflection of structures, International Journal of Solids and Structures, 41, 7445-7458
  • 30. Wang D., 2006, Optimal design of structural support positions for minimizing maximal bending moment, Finite Elements in Analysis and Design, 43, 95-102
  • 31. Won K.M., Park Y.S., 1998, Optimal support positions for a structure to maximize its fundamental natural frequency, Journal of Sound and Vibration, 213, 5, 801-812
  • 32. Xing B., Wang X., 2011, The singular function method based on the moving load deformation of suspension bridge, Advanced Materials Research, 403/408, 3059-3062
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b4d3784-6af5-40ae-82b3-85cdb1663e9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.