Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pulp rheology is an important factor affecting flotation. The effects of particle size (150-74 μm, 74-38 μm, 38-23 μm, -23 μm), pulp density (11.76%-34.78%), pH (5.3-12.4), collector concentration (25-500 mg/dm3), and stirring intensity (400-900 rpm) on the rheology of smithsonite, kaolinite, quartz, and calcite minerals were investigated in detail. Additionally, the agglomerate morphology of particles was observed by a polarizing microscope. The results showed that as the mineral particle size decreased and pulp density increased, the apparent viscosity and yield stress of the pulp increased. Especially the fine mineral particles (-23 μm) presented a higher apparent viscosity and yield stress. The order of apparent viscosity and yield stress for the minerals from large to small was: kaolinite>calcite>smithsonite>quartz under different pH values, the collector concentrations, and stirring intensities. In the presence of collector of octadecylamine, smithsonite, kaolinite, and calcite particles could form aggregates, especially smithsonite particles presented obvious agglomeration with large particle size and compact network structure. The agglomeration effect of calcite and kaolinite particles were weaker than that of smithsonite. The particle agglomeration resulted in the increase of the apparent viscosity and yield stress of the pulp. Quartz particles did not form clusters, hence the pulp’s apparent viscosity and yield stress were the lowest. The research on the changes in rheological properties of the pulp will hopefully provide some guidance for future flotation.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. 157244
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
- School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083, China
- State Key Laboratory of Mineral Processing Science and Technology, BGRIMM Technology Group, Beijing, China
autor
- State Key Laboratory of Mineral Processing Science and Technology, BGRIMM Technology Group, Beijing, China
Bibliografia
- BARNES, H.A., HUTTON, J.F., WALTERS, K., 1989. An introduction to rheology. J. Non-Newton. Fluid 3, 199.
- BECKER, M., YORATH, G., NDLOVU, B., HARRIS, M., DEGLON, D., FRANZIDIS, J.P., 2013. A rheological investigation of the behaviour of two Southern African platinum ores. Miner. Eng. 49, 92-97.
- BOGER, D.V., 2000. Rheology and the minerals industry. Min. Proc. Ext. Met. Rev. 20(1), 1-25.
- BOYLU, F., DINÇER, H., ATEŞOK, G., 2004. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries. Fuel Process. Technol. 85(4), 241-250.
- CRUZ, N., PENG, Y.J., FARROKHPAY, S., BRADSHAW, D., 2013. Interactions of clay minerals in copper-gold flotation: Part 1-Rheological properties of clay mineral suspensions in the presence of flotation reagents. Miner. Eng. 50-51, 30-37.
- DAS, G.K., KELLY, N., MUIR, D.M., 2011. Rheological behaviour of lateritic smectite ore slurries. Miner. Eng. 24(7), 594-602.
- DUARTE, G.M.P., LIMA, R.M.F., 2022. Quartz and hematite activation by Zn, Ca and Mg ions in the cationic flotation route for oxidized zinc ore. Min. Proc. Ext. Met. Rev. 43(6), 720-727.
- FARROKHPAY, S., 2012. The importance of rheology in mineral flotation: A review. Miner. Eng. 36-38, 272-278.
- FARROKHPAY, S., MORRIS, G.E., FORNASIERO, D., SELF, P., 2005. Influence of polymer functional group architecture on titania pigment dispersion. Colloid. Surface. A 253(1-3), 183-191.
- FARROKHPAY, S., MORRIS, G.E., FORNASIERO, D., SELF, P., 2010. Stabilisation of titania pigment particles with anionic polymeric dispersants. Powder Technol. 202(1-3), 143-150.
- GUPTA, V., HAMPTON, M.A., STOKES, J.R., NGUYEN, A.V., MILLER, J.D., 2011. Particle interactions in kaolinite suspensions and corresponding aggregate structures. J. Colloid Interface Sci. 359, 95–103.
- GUPTA, V., MILLER, J.D., 2010. Surface force measurements at the basal planes of ordered kaolinite particles. J. Colloid Interface Sci. 344, 362–371.
- HE, M.Z., WANG, Y.M., FORSSBERG, E., 2004. Slurry rheology in wet ultrafine grinding of industrial minerals: a review. Powder Technol. 147(1-3), 94-112.
- He, M.Z., Wang, Y.M., Forssberg, E., 2006. Parameter studies on the rheology of limestone slurries. Int. J. Miner. Process. 78(2), 63-77.
- HU, J.C., YU, X.G., SHI, Q., BING, X.L., LUO, Q.Y., 2020. Effect of serpentine content on rheological properties and flotation of pulp. Metal Mine (12), 125-129.
- MUSTER, T.H., PRESTIDGE, C.A., 1995. Rheological investigations of sulphide mineral slurries. Miner. Eng. 8(12), 1541–1555.
- NDLOVU, B, FORBES, E, FARROKHPAY, S, BECKER, M, BRADSHAW, D., DEGLON, D., 2014. A preliminary rheological classification of phyllosilicate group minerals. Miner. Eng. 55: 190–200.
- NDLOVU, B., BECKER, M., FORBES, E., DEGLON, D., FRANZIDIS, J.P., 2011. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner. Eng. 24(12), 1314-1322.
- PAPO, A., PIANI, L., RICCERI, R., 2002. Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: rheological characterization. Colloid. Surface. A 201(1-3), 219-230.
- PRESTIDGE, C.A., 1997. Rheological investigations of ultrafine galena particle slurries under flotation-related conditions. Int. J. Miner. Process. 51(1), 241-254.
- RICHMOND, W.R., JONES, R.L., FAWELL, P.D., 1998. The relationship between particle aggregation and rheology in mixed silica–titania suspensions. Chem. Eng. J. 71(1), 67-75.
- SHI, F.N., NAPIER-MUNN, T.J., 2002. Effects of slurry rheology on industrial grinding performance. Int. J. Miner. Process. 65(3-4), 125-140.
- WANG, C., ZHANG, Q., MAO, S., QIN, S.H., 2020. Effects of fine minerals on pulp rheology and the flotation of diaspore and pyrite mixed ores. Minerals-Basel 10(1), 60.
- WANG, L., LI, C., 2020. A brief review of pulp and froth rheology in mineral flotation. J. Chem-Ny 2020, 1-16.
- ZHOU, X., ZHAO, C.H., LI, Y.Q., CHEN, J.H., CHEN, Y., 2021. The flotation process, smelting process and extraction products on jamesonite: A review. Miner. Eng. 172,107146.
- ZHANG, M., PENG, Y.J., 2015. Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals. Miner. Eng. 70, 8-13.
- ZHAO, F.G., 2007. The present situation of the concentration of Pb-Zn ore. Non-Ferrous Min. Met. 23(6), 20-25.
- ZHAO, L., LIU, W.G., LIU, W.B., ZHOU, S.J., PENG, X.Y., 2021. Investigation on matching relationship between surface characters and collector properties: Achieving flotation separation of zinc oxide minerals from quartz. Colloid. Surface. A 617, 126392.
- ZHOU, Z., SCALES, P.J., BOGER, D.V., 2001. Chemical and physical control of the rheology of concentrated metal oxide suspensions. Chem. Eng. Sci. 56(9), 2901-2920.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b4bb7b1-990e-4b62-a2d3-abd34cb17b94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.