Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents results of the free surface flow around ship hull on two different types of computational grid. Each type of mentioned grid has its own advantages and disadvantages in particular cases, mostly in one phase simulation. Omitting cases with capitation, there is no free surface involved in one phase simulation. Multiphase simulations are crucial in the ship design process and optimization. Recreating free surface on the triangular mesh causes difficulties, in contrast to the hexahedral meshes, where calculated surface is more aligned to the physical border of the fluids. In this paper, results from the triangular mesh were compared to results from hexahedral mesh. Conclusions about triangular meshes in two phase simulation are presented. The computational fluid dynamic toolbox OpenFOAM is used to perform calculations of the total resistance of work boat in calm water.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
151--157
Opis fizyczny
bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Maritime University of Szczecin,Poland
autor
- University of Zilina, Slovak Republic
Bibliografia
- 1. Abramowski, T., and Sugalski, K. (2017). Energy saving procedures for fishing vessels by means of numerical optimization of hull resistance. Scientific Journals of the Maritime University of Szczecin 121, 19-27.
- 2. Blazek, J. (2005). Computational Fluid Dynamics: Principles and applications. (Elsevier).
- 3. De Marco, A., Mancini, S., Miranda, S., Scognamiglio, R., and Vitiello, L. (2017). Experimental and numerical hydrodynamic analysis of a stepped planing hull. Applied Ocean Research 64, 135-154.
- 4. Dudziak, J. (2008). Teoria okrętu (Gdańsk: Fundacja Promocji Przemysłu okrętowego i Gospodarki Morskiej).
- 5. Ferziger, J.H., and Perić, M. (2002). Computational Methods for Fluid Dynamics. (Berlin: Springer-Verlag).
- 6. Gryboś, R. (1998). Podstawy mechaniki płynów (Wydawnictwo Naukowe PWN).
- 7. Jaworski, Z. (2005). Numeryczna mechanika płynów w inzynierii chemicznej i procesowej (Warszawa: Akademicka Oficyna Wydawnicza EXIT).
- 8. Kim, Y.-C., Kim, K.-S., Kim, J., Kim, Y., Park, I.-R., and Jang, Y.-H. (2017). Analysis of added resistance and seakeeping responses in head sea conditions for low-speed full ships using URANS approach. International Journal of Naval Architecture and Ocean Engineering 9, 641-645.
- 9. Lomax, H., Pulliam, T.H., and Zingg, D.W. (2001). Fundamentals of Computational Fluid Dynamics. (Berlin: Springer-Verlag).
- 10. Michalski, J.P. (2013). Podstawy teorii projektowania okrętów (Gdańsk: Wydawnictwo Politechniki Gdańskiej).
- 11. Pacuraru, F., and Domnisoru, L. (2017). Numerical investigation of shallow water effect on a barge ship resistance. (Romania).
- 12. Suska, W.L. (2010). Motorówki i małe kutry motorowe-wypornościowe, półwypornościowe/półślizgowe i ślizgowe. (Gdańsk: Fundacja Promocji Przemysłu okrętowego i Gospodarki Morskiej).
- 13. Watson, D.G.M. (1998). Practical ship design (Elsevier).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b4afb90-d7f6-4604-9fc7-573cf84043e3