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FREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON
PASTERNAK FOUNDATION USING COUPLED DISPLACEMENT

FIELD METHOD

Complex structures used in various engineering applications are made up of
simple structural members like beams, plates and shells. The fundamental frequency is
absolutely essential in determining the response of these structural elements subjected
to the dynamic loads. However, for short beams, one has to consider the effect of shear
deformation and rotary inertia in order to evaluate their fundamental linear frequencies.
In this paper, the authors developed a Coupled Displacement Field method where the
number of undetermined coefficients 2n existing in the classical Rayleigh-Ritz method
are reduced to n, which significantly simplifies the procedure to obtain the analytical
solution. This is accomplished by using a coupling equation derived from the static
equilibrium of the shear flexible structural element. In this paper, the free vibration
behaviour in terms of slenderness ratio and foundation parameters have been derived
for the most practically used shear flexible uniform Timoshenko Hinged-Hinged,
Clamped-Clamped beams resting on Pasternak foundation. The findings obtained
by the present Coupled Displacement Field Method are compared with the existing
literature wherever possible and the agreement is good.

Nomenclature

A – area of cross section ρ – mass density of the material of the beam
E – Young’s modulus ω – radian frequency
G – shear modulus K̄w – Winkler foundation parameter
I – area moment of inertia K̄p – Pasternak foundation parameter
k – shear correction factor Kw – Winkler stiffness
L – length of the beam Kp – shear layer stiffness
r – radius of gyration β – slenderness ratio
T – kinetic energy ν – Poisson ratio
U – strain energy
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1. Introduction

The Winkler foundation model is considered as an infinitely closely spaced
springs put together. In actual situation this model neglects the shear interaction
between the adjacent springs which can not represent the characteristics of many
practical foundations. The Pasternak foundation model is an alternative model for
the Winkler foundation in which the shear interaction between the springs is con-
sidered to increase the flexibility of the foundation model. The Winkler foundation
model is a simple and single-parametric foundation model while the Pasternak
foundation model is a two-parametric foundation model which represents the foun-
dation parameter characteristics more accurately for practical purpose. The model
proposed by Pasternak assumes the existence of shear interaction between the
spring elements by connecting those elements to a layer of incompressible vertical
elements. C.F. Lü, C.W. Lim and W.A. Yao [1] presented a simplistic method
which describes the stresses and displacements of beams on a Pasternak elastic
foundation based on classical two-dimensional elasticity theory. C. Franciosi and
A. Masi [2] did a finite element free vibration analysis of beams on two-parameter
elastic foundation using exact shape functions. Ivo Caliò & Annalisa Greco [3]
analysed axially-loaded Timoshenko beams on elastic foundation through dynamic
stiffness matrix method. Joon Kyu Lee et al. [4] studied the free vibrations of
prismatic beams resting on Pasternak foundation by giving special attention to the
bending-twisting of the beams by deriving governing differential equations and
solving them by using the combination of Runge-Kutta and Regula-Falsi methods.
M.A. De Rosa [5] worked on free vibrations of Timoshenko beams resting on two
parametric elastic foundation by taking two variants of the equation of motion in
which the second foundation parameter is a function of the total rotation of the
beam or a function of the rotation due to bending. M.A. De Rosa and M.J. Mau-
rizi [6] found out the influence of concentrated masses and the Pasternak soil on
the free vibrations of Euler beams. M. Karkon and H. Karkon [7] introduced an
element formulation for free vibration analysis of Timoshenko beam on Pasternak
elastic foundation using finite element method. Meera Saheb. K. et al. [8] studied
free vibration analysis of Timoshenko beams using Coupled Displacement Field
method for uniform Timoshenko beams for different beam boundary conditions.
Mohamed Taha Hassan and Mohamed Nassar [9] studied the static and dynamic
behaviour of a Timoshenko beam subjected to a static axial compressive load and
a dynamic lateral load resting on a two parameter foundation using Adomian De-
composition Method (ADM) in which the natural frequencies for free vibration
and beam response in forced vibrations are calculated. Nguten Dinh Kien [10]
presented finite-element formulation for investigating the free vibration of uniform
Timoshenko beams resting on a Winkler-type elastic foundation and pre-stressing
by an axial force. P. Obara [11] executed vibration and stability analysis of uniform
beams supported on two parameter elastic foundation. S.Y. Lee, Y.H. Kuo, and
F.Y. Lin [12] investigated the influence of the Winkler elastic foundation modu-
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lus, slenderness ratio and elastically restrained boundary conditions on the critical
load of Timoshenko beams subjected to an end follower force. T.M. Wang and
J.E. Stefens [13] worked on both free and forced vibrations of continuous Tim-
oshenko beams on Winkler-Pasternak foundations in which the general dynamic
slope-deflection equations include the combined effects of rotary inertia and shear
deformation. T.M. Wang and L.W. Gagnon [14] considered the dynamic analysis
of continuous Timoshenko beams on Winkler-Pasternak foundations by means of
the general dynamic slope-deflection equations. T. Yokoyama [15] offered a finite
element technique for determining the vibration characteristics of a uniform Tim-
oshenko beam-column supported on a two-parameter elastic foundation in which
the beam-column is discretized into a number of simple elements with four de-
grees of freedom at each node. T. Yokoyama [16] studied the parametric instability
behaviour of a Timoshenko beam resting on an elastic foundation of the Winkler
type by the finite element technique.

W.Q .Chen, C.F. Lü and Z.G. Bian [17] used a mixed method which consists
of state space method and differential quadrature method to find the free vibrations
of beams resting on a Pasternak elastic foundation. The aim of the present paper
is to develop a procedure to reduce the number of undetermined coefficients from
2n to n in a general sense and for a single term approximation, from two to
one [8]. This simplifies the solution procedure enormously by almost a factor of
two for Timoshenko beams. This is achieved based on the concept of the Coupled
Displacement Field (CDF) method, which was successfully applied by the authors
[8]. To explain the ease of the present method, the expressions for fundamental
frequency parameter values are obtained for uniform shear flexible Timoshenko
beams with Hinged-Hinged, Clamped-Clamped beam boundary conditions.

2. Coupled Displacement Field method (CDF)

2.1. Coupling equation

From the kinematics of a shear flexible beam theory (based on the Timoshenko
beam theory)

ū(x, z) = zθ (1)

w̄(x, z) = w(x, z) (2)

where w̄ is the transverse displacements at any point of the beam ū is the axial
displacement at any point of the beam and z is the distance of the any point from the
neutral axis, θ is the total rotation anywhere on the beam axis, w is the transverse
displacement and x, z are the independent spatial variables. The axial and shear
strains are given by

εx = z
∂θ

∂x
(3)
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Fig. 1. Uniform Timoshenko beam resting on Pasternak foundation

γxz =
∂w

∂x
+ θ (4)

The strain energy is represented by U and the work done is represented by W , and
the expressions are given by

U =
EI
2

L∫
0

(
dθ
dx

)2
dx +

kGA
2

L∫
0

(
∂w

∂x
+ θ

)2
dx (5)

W =

L∫
0

p(x)w(x)dx (6)

GA is the shear rigidity and EI is the flexural rigidity, k is the shear correction
factor (= 5/6), p(x) is the static lateral load per unit length acting on the beam, I
is the area moment of inertia, E is the Young’s modulus, G is the shear modulus,
A is the area of cross section, x is the axial coordinate and L is the length of the
beam. Applying the principle of minimization of total potential energy as

δ(U −W ) = 0 (7)

the following static equilibrium equations can be obtained

kGA
(

d2w

dx2 +
dθ
dx

)
+ p = 0 (8)

EI
d2θ

dx2 − kGA
(

dw
dx
+ θ

)
= 0 (9)

where θ represents the total rotation and w is transverse displacement.
Equations (8) and (9) are coupling equations and can be used for getting the

solution for the static analysis of the shear-deformable beams. By observing the
equation (8) carefully one can see that, it depends on the load term p and the
equation (9) is independent of the load term p. Hence, the equation (9) is used to
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combine the total rotation θ and the transverse displacement w, such that the two
unknown coefficients problem becomes a single unknown coefficient problem and
the final linear free vibration problem becomes very simpler to solve.

The concept of Coupled Displacement Field method is explained in detail.
In Coupled Displacement Field method (CDF), using the single term admissible
function for total rotation, the function for transverse displacement one can derive
using the coupling equation (9). The assumed admissible function for total rotation
satisfies all the applicable boundary conditions such as kinematic, natural boundary
conditions and the symmetric condition. For Hinged-Hinged uniform Timoshenko
beam, the admissible function for (mth mode of vibration) the total rotation is
assumed as

θ = a
mπ
L

cos
mπx

L
, (10)

where m is the mode number, a is the central lateral displacement of the beam
which is also the maximum lateral displacement.

Rewriting equation (9)

dw
dx
= −θ +

EI
kGA

d2θ

dx2 . (11)

First and second differentiation of equation (10) with respect to x is given as
follows

dθ
dx
= −a

(mπ
L

)2
sin

mπx
L

, (12)

d2θ

dx2 = −a
(mπ

L

)3
cos

mπx
L

. (13)

By substituting the value of (10), (13) into equation (11), and after simplification
the following expression can be obtained

dw
dx
= −a

mπ
L

(
1 +

EI
kGA

m2π2

L2

)
cos

mπx
L

(14)

By integrating the above equation, the lateral displacement can be obtained as

w = −a
[
1 +

(mπ
L

)2
γ

]
sin mπζ (15)

where γ =
EI

kGA
and ζ =

x
L
.

It is observed from equation (10) and equation (15) that the θ distribution
and the transverse displacement w, contains the same unknown coefficient a and
equation (15) satisfies all the kinematic, natural and symmetric beam boundary
conditions

w(0) = w(L) =
dw
dx

�����x= L
2

= 0. (16)
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2.2. Linear free vibrations

Linear free vibrations can be studied, once the Coupled Displacement Field
for the lateral displacement w, for an assumed θ distribution is evaluated, using the
principle of conservation of total energy at any instant of time, neglecting damping,
which states that total energy is constant when the structural member is vibrating

U + T = const.

The expression for strain energy stored in the beam due to bending and transverse
shear force is given as

UE =
EI
2

L∫
0

(
dθ
dx

)2
dx +

kGA
2

L∫
0

(
dw
dx
+ θ

)2
dx (17)

Substituting the equations (10), (12) and (14) into the above equation and after
simplification

UE =
EI
2

a2m4π4

L4

[(
L
2
−

L sin(2πm)
4πm

)
+

EI
kGA

(mπ
L

)2 ( L
2
+

L sin(2πm)
4πm

)]
(18)

The term sin(2πm) = 0 for m = 1, 2, 3, 4, 5 . . . so the above equation becomes (for
1st mode)

UE =
EI
4

a2π4

L3

[
1 +

EI
kGA

(
π

L

)2]
(19)

Strain energy stored due to two parameter foundation can be calculated as

UF =
Kw

2

L∫
0

w2dx +
Kp

2

L∫
0

(
dw
dx

)2
dx (20)

where Kw is the Winkler foundation stiffness and Kp is the Pasternak foundation
stiffness. Substituting the equations (14) and (15) into the above equation and after
simplification

UF =
EI
2L4 a2

(
1 +

EI
kGA

m2π2

L2

)2 [
K̄w

(
L
2
−

L sin(2πm)
4πm

)
+

m2π2K̄p

(
L
2
+

L sin(2πm)
4πm

)]
(21)

The term sin(2πm) = 0 for m = 1, 2, 3, 4, 5 . . . so the above equation becomes (for
1st mode)

UF =
EI
4L3 a2

(
1 +

EI
kGA

π2

L2

)2 [
K̄w + π

2K̄p

]
(22)
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K̄w is the Winkler stiffness foundation parameter
(
=

KwL4

EI

)
and K̄p is Pasternak

stiffness foundation parameter *
,
=

KpL2

EI
+
-
, the total strain energy stored in the beam

due to deformation and foundation can be calculated as

U = UE +UF . (23)

Substituting equation (19) and (22) into the above equation and after simplification

U=
EIa2

4L3


(mπ)4

(
1+

3.12m2π2

β2

)
+

(
1+

3.12m2π2

β2

)2 (
K̄w + K̄p (mπ)2

)
(24)

The expression for kinetic energy is

T =
ρAω2

2

L∫
0

w2dx +
ρIω2

2

L∫
0

θ2dx (25)

Substituting equations (10) and (15) in the above equation and after simplification

T =
ρAω2a2

2



(
1 +

3.12m2π2

β2

)2 (
L
2
−

L sin(2πm)
4πm

)
+

m2π2

β2

(
L
2
+

L sin(2πm)
4πm

)]
(26)

For first mode

T =
ρAω2a2L

4



(
1 +

3.12π2

β2

)2

+
π2

β2


(27)

by applying the Lagrangian
∂(U − T )

∂a
= 0. (28)

After simplification, the non-dimensional frequency parameter is obtained and is
given as

λ = π4



m4
(
1 +

3.12π2m2

β2

)
+

(
1 +

3.12m2π2

β2

)2 1
π2

(
K̄w

π2 + K̄pm2
)

(
1 +

3.12m2π2

β2

)2

+
m2π2

β2



(29)

where λ =
ρAω2L4

EI
, β =

L
r
is the slenderness ratio.
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The above expression is used to calculate the frequency parameter values for
any number of modes (m = 1, 2, 3, 4, 5, 6 . . . n modes).

If m = 1, then it becomes fundamental frequency parameter i.e

λ = π4



(
1 +

3.12π2

β2

)
+

(
1 +

3.12π2

β2

)2 1
π2

(
K̄w

π2 + K̄p

)
(
1 +

3.12π2

β2

)2

+
π2

β2


The fundamental frequency parameter values for various slenderness ratio

and foundation parameters are shown in Table 3 and compared with the existing
literature. The frequency parameter values forHinged-Hinged uniformTimoshenko
beam resting on Pasternak foundation at second mode is also calculated by putting
the value of m = 2 in equation (29) and these values are shown in Table 4.

In the reference [17], the thickness to length ratio, i.e.,
H
L

is being converted

in to the slenderness ratio β =
L
r
, which we know

I = Ar2 (30)

and for rectangular section of thickness H and width b

I =
bH3

12
. (31)

By solving equations (30) and (31) the value of r becomes r =
H
√

12
.

The same procedure is followed as discussed in the above section, for cal-
culating fundamental frequency parameter for the given Clamped-Clamped beam
boundary condition resting on Pasternak foundation.

3. Numerical results and discussion

The concept of Coupled Displacement Field method is demonstrated to de-
termine the linear non-dimensional fundamental frequency parameter values of
uniform Timoshenko beams resting on Pasternak foundation with the two most
practically used such as Hinged-Hinged, Clamped-Clamped beam boundary con-
ditions.

The beams considered here are with axially immovable ends. Suitable single
term trigonometric/algebraic admissible function is used to represent the total
rotation (θ) in the CoupledDisplacement Fieldmethod. The corresponding coupled
lateral displacement (w) is derived using the coupling equation. Numerical results
(the non-dimensional fundamental frequency parameter) are obtained in terms of
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foundation parameters and slenderness ratios. To assess the accuracy of the results,
the present results obtained from the Coupled Displacement Field method are
compared with the existing literature.

Table 1 shows the expressions, such as total rotation (trigonometric function),
derived transverse displacement and linear non dimensional fundamental frequency
parameter for Clamped-Clamped beam boundary condition resting on Pasternak
foundation. Table 2 shows the expressions for total rotation (algebraic function),
transverse displacement and frequency parameter for Clamped-Clamed uniform
Timoshenko for second mode.

Table 1.
Expressions for total rotation, derived transverse displacement and fundamental frequency
parameter for Clamped-Clamped beam boundary condition resting on Pasternak foundation

Parameters Expression for

Total rotation (θ) θ = a
2π
L

sin
2πx

L

Transverse
displacement (w) w = a


1 +

(
2π
L

)2 EI
kGA



(
cos

2πx
L
− 1

)

Fundamental
frequency
parameter

λ =

(
501.69045 +

63950.0376
β2

) [
1 +

3
16

K̄w

π4 γ +
K̄p

4
γ

]

[
1 +

285.8238
β2 +

15171.48039
β4

]

where γ =
(
1 +

123.1726
β2

)

Table 2.
Expressions for total rotation, derived transverse displacement and frequency parameter for
Clamped-Clamped beam boundary condition at second mode for uniform Timoshenko beams

resting on Pasternak foundation
Parameters Expression for

Total rotation (θ) θ = aL4(−ζ + 6ζ2 − 10ζ3 + 5ζ4)

Transverse
displacement (w) w = aL5

[(
ζ2

2
− 2ζ3 +

10
4
ζ4 − ζ5

)
+

γ

L2 (12ζ − 30ζ2 + 20ζ3)
]

Frequency
parameter
(2nd mode)

λ =

π2
[(

0.01447 +
7.5869
β2

)
+

K̄w

π2

(
0.000036 +

11.1244
β4 +

0.0113
β2

)]

[
0.000036 +

11.1244
β4 +

0.0113
β2

] +

+

π2
[

K̄p

π2

(
0.00158 +

233.62
β4 +

0.8913
β2

)]

[
0.000036 +

11.1244
β4 +

0.0113
β2

]
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Table
3.

(λ
1
/4)Fundam

entalfrequency
param

etervaluesofH
inged-H

inged
Tim

oshenko
beam

resting
on

Pasternak
foundation

Foundation
Slendernessratio

(β)
param

eters
17

52
100

200
300

415

K̄
w

K̄
p

π
2

Present
ref.[17]

Exact[17]
Present

ref.[17]
Exact[17]

Present
Present

Present
Present

ref.[17]
Exact[17]

ref.[6]
ref.[7]

C
D
F

C
D
F

C
D
F

C
D
F

C
D
F

C
D
F

m
ethod

m
ethod

m
ethod

m
ethod

m
ethod

m
ethod

0
0

3.0420
3.0479

3.0480
3.1298

3.1302
3.1302

3.1384
3.1408

3.1412
3.1414

3.1414
3.1414

3.1416
3.1416

0.5
3.3961

3.3945
3.3946

3.4671
3.4667

3.4667
3.4741

3.4760
3.4764

3.4765
3.4765

3.4766
3.4767

3.4767
1

3.6649
3.6580

3.6580
3.7274

3.7265
3.7266

3.7337
3.7354

3.7357
3.7358

3.7358
3.7359

3.7360
3.7360

2.5
4.2379

4.2183
4.2183

4.2897
4.2880

4.2881
4.2950

4.2965
4.2967

4.2968
4.2968

4.2969
4.2970

4.2970
3

4.3856
–

–
4.4358

–
–

4.4409
4.4423

4.4426
4.4427

–
–

–
–

3.5
4.5197

–
–

4.5687
–

–
4.5737

4.5751
4.5754

4.5755
–

–
–

–
4

4.6429
–

–
4.6909

–
–

4.6959
4.6973

4.6975
4.6976

–
–

–
–

4.5
4.7570

–
–

4.8043
–

–
4.8092

4.8105
4.8108

4.8109
–

–
–

–
5

4.8634
–

–
4.9101

–
–

4.9150
4.9163

4.9166
4.9167

–
–

–
10 2

0
3.6776

3.6705
3.6705

3.7398
3.7389

3.7389
3.7460

3.7478
3.7481

3.7482
3.7482

3.7482
3.7483

3.7484
0.5

3.8956
3.8839

3.8840
3.9528

3.9516
3.9517

3.9586
3.9603

3.9605
3.9606

3.9606
3.9607

3.9608
3.9608

1
4.0821

4.0663
4.0664

4.1361
4.1347

4.1347
4.1416

4.1432
4.1434

4.1435
4.1435

4.1436
4.1437

4.1437
2.5

4.5265
4.4991

4.4991
4.5754

4.5734
4.5735

4.5804
4.5819

4.5821
4.5822

4.5822
4.5823

4.5824
4.5824

3
4.6492

–
–

4.6971
–

–
4.7021

4.7035
4.7038

4.7039
–

–
–

–
3.5

4.7628
–

–
4.8101

–
–

4.8150
4.8163

4.8166
4.8167

–
–

–
–

4
4.8689

–
–

4.9156
–

–
4.9204

4.9218
4.9220

4.9221
–

–
–

–
4.5

4.9684
–

–
5.0147

–
–

5.0195
5.0209

5.0211
5.0212

–
–

–
–

5
5.0623

–
–

5.1082
–

–
5.1130

5.1144
5.1146

5.1147
–

–
–

–
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Numerical results in the form of non-dimensional fundamental frequency pa-
rameter for various slenderness ratios, Winkler foundation parameters and Paster-
nak foundation parameters are given in Tables 3, 4, 5 and 6, respectively for the
Timoshenko Hinged-Hinged and Clamped-Clamped beam boundary conditions
resting on Pasternak foundation for first and second modes.

Table 4.
(λ1/4) Frequency Parameter values of Hinged-Hinged Timoshenko Beam resting on Pasternak

foundation for second mode
Foundation Slenderness ratio (β)
parameters 17 52 100 200 300 415

K̄w
K̄p

π2

Present Present Present Present Present Present ref. [7]
CDF CDF CDF CDF CDF CDF

method method method method method method
0 0 5.6568 6.1930 6.4471 6.2768 6.2803 6.2817 6.2832

0.5 5.8937 6.3861 6.6210 6.4649 6.4682 6.4695 6.4709
1 6.1050 6.5631 7.0739 6.6379 6.6411 6.6423 6.6437
2.5 6.6339 7.0226 7.2071 7.0889 7.0917 7.0928 7.0940
3 6.7850 7.1575 7.3334 7.2217 7.2244 7.2255 –
3.5 6.9266 7.2851 7.4534 7.3476 7.3502 7.3512 –
4 7.0600 7.4063 7.5679 7.4673 7.4699 7.4709 –
4.5 7.1863 7.5219 7.6774 7.5815 7.5840 7.5850 –
5 7.3062 7.6324 6.3571 7.6907 7.6932 7.6942 –

102 0 5.7820 6.2943 6.5381 6.3754 6.3788 6.3801 6.3816
0.5 6.0049 6.4788 6.7052 6.5554 6.5586 6.5599 6.5613
1 6.2054 6.6487 7.1432 6.7217 6.7248 6.7260 6.7273
2.5 6.7127 7.0928 7.2727 7.1580 7.1608 7.1618 7.1630
3 6.8588 7.2238 7.3957 7.2871 7.2898 7.2909 –
3.5 6.9960 7.3481 7.5128 7.4097 7.4124 7.4134 –
4 7.1257 7.4663 7.6247 7.5265 7.5291 7.5301 –
4.5 7.2486 7.5792 7.7319 7.6381 7.6407 7.6416 –
5 7.3656 7.6873 6.4471 7.7451 7.7475 7.7485 –

It is observed from Table 3 and Table 4 that the fundamental frequency pa-
rameter increases with the increase of Pasternak foundation parameter for a given
Winkler foundation parameter. It is in general, observed from Table 3 and Table
4 that the fundamental frequency parameter increases with the increase of slen-
derness ratio for a given Pasternak and Winkler foundation parameter. It is found
from Table 3 and Table 4 that the fundamental frequency parameter increases with
the increase of Pasternak foundation parameter for a given Winkler foundation
parameter and slenderness ratio. It may be noted here that the results obtained
using coupled displacement field method for the Timoshenko Hinged-Hinged and
Clamped-Clamped beams with and without foundation match very well those of
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Table
5.

(λ
1
/4)Fundam

entalfrequency
param

etervaluesofC
lam

ped-C
lam

ped
Tim

oshenko
beam

resting
on

Pasternak
foundation

Foundation
Slendernessratio

(β)
param

eters
17

52
100

200
300

415

K̄
w

K̄
p

π
2

Present
ref.[17]

Present
ref.[17]

Present
Present

Present
Present

ref.[17]
ref.[6]

ref.[7]
ref.[2]

C
D
F

C
D
F

C
D
F

C
D
F

C
D
F

C
D
F

m
ethod

m
ethod

m
ethod

m
ethod

m
ethod

m
ethod

0
0

4.2720
4.2634

4.6665
4.6655

4.7142
4.7280

4.7306
4.7316

4.7314
4.7300

4.7300
4.7300

0.5
4.4508

4.4190
4.8120

4.8038
4.8567

4.8697
4.8721

4.8731
4.8683

4.8680
4.8670

4.8700
1

4.6104
4.5595

4.9454
4.9302

4.9877
5.0000

5.0023
5.0032

4.9938
4.9940

4.9926
4.9900

2.5
5.0098

4.9102
5.2917

5.2567
5.3288

5.3397
5.3418

5.3425
5.3195

5.3200
5.3184

5.3200
3

5.1239
–

5.3933
–

5.4292
5.4398

5.4417
5.4425

–
–

–
–

3.5
5.2309

–
5.4894

–
5.5243

5.5346
5.5365

5.5372
–

–
–

–
4

5.3316
–

5.5808
–

5.6147
5.6247

5.6266
5.6273

–
–

–
–

4.5
5.4270

–
5.6679

–
5.7010

5.7107
5.7126

5.7133
–

–
–

–
5

5.5176
–

5.7511
–

5.7835
5.7931

5.7949
5.7955

–
–

–
–

10 2
0

4.5390
4.5417

4.8854
4.8926

4.9287
4.9413

4.9437
4.9446

4.9515
4.9500

4.9504
4.9500

0.5
4.6901

4.6720
5.0132

5.0235
5.0543

5.0663
5.0686

5.0694
5.0718

5.0710
5.0707

5.2300
1

4.8278
4.7909

5.1319
5.1254

5.1712
5.1827

5.1849
5.1857

5.1834
5.1820

5.1824
5.5400

2.5
5.1825

5.0974
5.4458

5.4198
5.4812

5.4915
5.4935

5.4942
5.4783

5.4770
5.4773

5.4800
3

5.2860
–

5.5393
–

5.5737
5.5838

5.5857
5.5864

–
–

–
–

3.5
5.3837

–
5.6283

–
5.6618

5.6717
5.6735

5.6742
–

–
–

–
4

5.4764
–

5.7133
–

5.7460
5.7556

5.7574
5.7581

–
–

–
–

4.5
5.5647

–
5.7946

–
5.8266

5.8361
5.8379

5.8385
–

–
–

–
5

5.6489
–

5.8726
–

5.9040
5.9133

5.9151
5.9157

–
–

–
–

Unauthenticated
Download Date | 9/21/17 3:01 PM



FREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON PASTERNAK FOUNDATION . . . 371

Table
6.

(λ
1
/4)Frequency

param
etervaluesofC

lam
ped-C

lam
ped

Tim
oshenko

beam
resting

on
Pasternak

foundation
forsecond

m
ode

Foundation
Slendernessratio

(β)
param

eters
17

52
100

200
300

415

K̄
w

K̄
p

π
2

Present
Present

Present
Present

Present
Present

ref.[17]
ref.[6]

ref.[7]
ref.[2]

C
D
F

C
D
F

C
D
F

C
D
F

C
D
F

C
D
F

m
ethod

m
ethod

m
ethod

m
ethod

m
ethod

m
ethod

0
0

5.1754
6.8092

7.5036
7.8128

7.8799
7.9065

7.8533
7.8540

7.8532
7.8500

0.5
5.2901

6.9029
7.6045

7.9174
7.9853

8.0122
7.9680

7.9680
7.9678

7.9700
1

5.3977
6.9930

7.7015
8.0181

8.0868
8.1140

8.0777
8.0780

8.0775
8.0800

2.5
5.6871

7.2441
7.9725

8.2992
8.3702

8.3983
8.3812

8.3800
8.3811

8.3800
3

5.7744
7.3222

8.0570
8.3869

8.4585
8.4870

–
–

–
–

3.5
5.8579

7.3980
8.1389

8.4719
8.5442

8.5729
–

–
–

–
4

5.9380
7.4715

8.2184
8.5544

8.6274
8.6564

–
–

–
–

4.5
6.0149

7.5428
8.2956

8.6346
8.7082

8.7375
–

–
–

–
5

6.0890
7.6123

8.3708
8.7126

8.7869
8.8164

–
–

–
–

10 2
0

5.2412
6.8505

7.5496
7.8613

7.9289
7.9558

7.9044
7.9040

7.9043
7.9000

0.5
5.3518

6.9425
7.6487

7.9641
8.0325

8.0596
8.0169

8.0170
8.0168

8.1600
1

5.4559
7.0311

7.7441
8.0630

8.1322
8.1597

8.1247
8.1240

8.1245
8.3900

2.5
5.7369

7.2784
8.0110

8.3398
8.4112

8.4395
8.4234

8.4230
8.4232

8.4200
3

5.8220
7.3555

8.0942
8.4262

8.4983
8.5269

–
–

–
–

3.5
5.9036

7.4302
8.1750

8.5100
8.5828

8.6117
–

–
–

–
4

5.9819
7.5028

8.2535
8.5914

8.6649
8.6940

–
–

–
–

4.5
6.0572

7.5733
8.3298

8.6706
8.7447

8.7741
–

–
–

–
5

6.1298
7.6419

8.4041
8.7477

8.8224
8.8521

–
–

–
–
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exact values and other open literature. In general the Coupled Displacement Field
method is equally applicable for calculating frequencies at higher modes.

Similar trend is also observed as discussed in the above section for the case
of uniform Timoshenko Clamped-Clamped beam boundary condition resting on
Pasternak foundation. It is in general observed from Table 5 and Table 6 that more
frequencies are observed in the case of uniform Timoshenko Clamped-Clamped
beam boundary condition when compared to the Hinged-Hinged beam boundary
condition. Stiffening effect has been observed in the case of uniform Timoshenko
Clamped-Clamped beam boundary condition.

4. Conclusions

It is shown that the present CDF method provides a unified approach for
the vibration analysis of Hinged-Hinged, Clamped-Clamped beams resting on the
Pasternak foundation, compared to the exact values and other existing open liter-
ature. The beams considered here are axially immovable ends. Using the present
formulation, the values of fundamental frequency parameter is calculated for a two-
parameter elastic foundation such as Winkler and Pasternak one. In this method,
because of the use of the coupling equation which couples the total rotation and
transverse displacement, the computational efforts for solving the free vibration
problem are reduced. Numerical results, in terms of frequency parameter in terms
of several slenderness ratios, Winkler foundation parameters and Pasternak foun-
dation parameters for the first mode and second mode, are presented in this paper
for the most practically used beam boundary conditions such as Hinged-Hinged,
Clamped-Clamped. The accuracy of the results are presented in Tables 3, 4,5 and 6.

Acknowledgements

The research illustrated in this paper was carried out at Jawaharlal Nehru Tech-
nological University Kakinada, AP, India and this work is supported by Technical
Education Quality Improvement Program-II. The authors would like to express
their gratefulness to the authorities Jawaharlal Nehru Technological University
Kakinada, AP, and India for extending their support.

Manuscript received by Editorial Board, January 23, 2017;
final version, June 29, 2017.

References

[1] C.F. Lü, C.W. Lim, and W.A. Yao. A new analytic symplectic elasticity approach for beams
resting on Pasternak elastic foundations. Journal of Mechanics of Materials and Structures,
4(10):1741–1754, 2010. doi: 10.2140/jomms.2009.4.1741.

[2] C. Franciosi and A. Masi. Free vibrations of foundation beams on two-parameter elastic soil.
Computers & Structures, 47(3):419–426, 1993. doi: 10.1016/0045-7949(93)90237-8.

Unauthenticated
Download Date | 9/21/17 3:01 PM



FREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON PASTERNAK FOUNDATION . . . 373

[3] I. Caliò and A. Greco. Free vibrations of Timoshenko beam-columns on Pasternak foundations.
Journal of Vibration and Control, 19(5):686–696, 2013. doi: 10.1177/1077546311433609.

[4] S. Lee, J.K. Kyu Jeong and J. Lee. Natural frequencies for flexural and torsional vibrations
of beams on Pasternak foundation. Soils and Foundations, 54(6):1202–1211, 2014. doi:
10.1016/j.sandf.2014.11.013.

[5] M.A. De Rosa. Free vibrations of Timoshenko beams on two-parameter elastic foundation.
Computers & Structures, 57(1):151–156, 1995. doi: 10.1016/0045-7949(94)00594-S.

[6] M.A. De Rosa andM.J.Maurizi. The influence of concentratedmasses and Pasternak soil on the
free vibrations of Euler beams—exact solution. Journal of Sound and Vibration, 212(4):573–
581, 1998. doi: 10.1006/jsvi.1997.1424.

[7] M. Karkon and H. Karkon. New element formulation for free vibration analysis of Timoshenko
beam on Pasternak elastic foundation. Asian Journal of Civil Engineering (BHRC), 17(4):427–
442, 2016.

[8] K.Meera Saheb et al. Free vibration analysis of Timoshenko beams usingCoupledDisplacement
Field Method. Journal of Structural Engineering, 34:233–236, 2007.

[9] M.T. Hassan and M. Nassar. Analysis of stressed Timoshenko beams on two parameter foun-
dations. KSCE Journal of Civil Engineering, 19(1):173–179, 2015. doi: 10.1007/s12205-014-
0278-8.

[10] N.D. Kien. Free vibration of prestress Timoshenko beams resting on elastic foundation. Vietnam
Journal of Mechanics, 29(1):1–12, 2007. doi: 10.15625/0866-7136/29/1/5586.

[11] P. Obara. Vibrations and stability of Bernoulli-Euler and Timoshenko beams on two-parameter
elastic foundation. Archives of Civil Engineering, 60(4):421–440, 2014. doi: 10.2478/ace-
2014-0029.

[12] S.Y. Lee, Y.H. Kuo, and F.Y. Lin. Stability of a Timoshenko beam resting on a Winkler elastic
foundation. Journal of Sound and Vibration, 153(2):193–202, 1992. doi: 10.1016/S0022-
460X(05)80001-X.

[13] T.M. Wang and J.E. Stephens. Natural frequencies of Timoshenko beams on Pasternak
foundations. Journal of Sound and Vibration, 51(2):149–155, 1977. doi: 10.1016/S0022-
460X(77)80029-1.

[14] T.M. Wang and L.W. Gagnon. Vibrations of continuous Timoshenko beams on Winkler-
Pasternak foundations. Journal of Sound and Vibration, 59(2):211–220, 1978. doi:
10.1016/0022-460X(78)90501-1.

[15] T. Yokoyama. Vibration analysis of Timoshenko beam-columns on two-parameter elastic foun-
dations. Computers & Structures, 61(6):995–1007, 1996. doi: 10.1016/0045-7949(96)00107-1.

[16] T. Yokoyama. Parametric instability of Timoshenko beams resting on an elastic foundation.
Computers & Structures, 28(2):207–216, 1988. doi: 10.1016/0045-7949(88)90041-7.

[17] W.Q. Chen, C.F. Lü, and Z.G. Bian. A mixed method for bending and free vibration of beams
resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10):877–890,
2004. doi: 10.1016/j.apm.2004.04.001.

Unauthenticated
Download Date | 9/21/17 3:01 PM


	Introduction
	Coupled Displacement Field method (CDF)
	Coupling equation
	Linear free vibrations

	Numerical results and discussion
	Conclusions

