PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Printer Head Velocity on FDM Deposited Path Deformations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fused deposition modeling is a technology, which uses print head’s nozzle that is moved in three dimensions, during extraction of the filament material. The common issue is the fact, that the quality parameters of the deposited model are significantly influenced by the actual material’s flow rate. Although highest accuracy of the model should be obtained when the mass flow rate is directly proportional to an actual velocity of the printer’s head, the discrepancy between expected and real flow rate causes deformations and inaccuracies of the printed path. This phenomena is especially visible during acceleration and deceleration of the printhead. Development of commercially efficient measurement method may be used in software calibration of the material mass flow. In perspective, direct feedback control of material flow rate could increase correlation of quality and print time of deposited models that can lead to an FDM printing process enhancements and refinements in an efficient manner. The influence of the 3D printer’s head velocity on the width of the deposited path is studied using visual methods.
Słowa kluczowe
Rocznik
Strony
117--127
Opis fizyczny
Bibliogr. 10 poz., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology Faculty of Production Engineering
  • Warsaw University of Technology Faculty of Production Engineering
Bibliografia
  • [1] Anitha, R., Arunachalam, S., and Radhakrishnan, P. (2001). Critical parameters influencing the quality of prototypes in fused deposition modelling. Journal of Materials Processing Technology, 118(1-3):385–388.
  • [2] Bähr, F. and Westkämper, E. (2018). Correlations between influencing parameters and quality properties of components produced by fused deposition modeling. Procedia CIRP, 72(1):1214–1219.
  • [3] Bikas, H., Stavropoulos, P., and Chryssolouris, G. (2016). Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology, 83(1-4):389–405.
  • [4] Chacón, J., Caminero, M., García-Plaza, E., and Núñez, P. (2017). Additive manufacturing of pla structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124:143–157.
  • [5] Hernandez, D. D. (2015). Factors affecting dimensional precision of consumer 3d printing. International Journal of Aviation, Aeronautics, and Aerospace, 2(4):2.
  • [6] INKWoodResearch (2018). Global 3d printing market forecast 2017-2025. Report Summary, access date: September 2018.
  • [7] Kazi Marzuka, S. and Kulsum, J. U. (2016). 3d printing: a new avenue in pharmaceuticals. WORLD JOURNAL OF PHARMACEUTICAL RESEARCH, 5(5).
  • [8] Kim, G. and Oh, Y. (2008). A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(2):201–215.
  • [9] Sullivan, F. (2016). Global additive manufacturing market, forecast to 2025. Report, no. MB74-10, May 2016.
  • [10] Taufik, M. and Jain, P. K. (2016). A study of build edge profile for prediction of surface roughness in fused deposition modeling. Journal of Manufacturing Science and Engineering, 138(6):061002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b40130f-eb58-488b-bc7a-80374ba26c97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.