PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of user interface performing a DVZ-fuzzy logic pilot for powered wheelchair

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the preliminary tests of an adapted user interface that performs an hybrid fuzzy-Deformable Virtual Zone(DVZ) pilot. The proposed concept uses a safely guidance algorithm for the powered wheelchair user and a laser range sensor to avoid collision. An adapted user interface is developed so that the accessibility and the mobility of disable or aged people especially those suffering from low cognitive abilities will be enhanced. Trials with the proposed algorithm detected obstacles and avoid them in 80% of trials with different objects and generated safe paths for the interface user.
Twórcy
autor
  • – Computer Department, Community College, Imam Abdulrahman Bin Faisal University, P.O Box 1982, Dammam 31441, Saudi Arabia
  • Engineering School of Sfax (ENIS), University of Sfax, Tunisia
  • Institut PRISME, 63 av. de Lattre de Tassigny, F-18020 Bourges cedex, France
  • Institut PRISME, 63 av. de Lattre de Tassigny, F-18020 Bourges cedex, France
autor
  • Engineering School of Sfax (ENIS), University of Sfax, Tunisia
Bibliografia
  • [1] L. Amouri, C. Novales, G. Poisson, M. Njah, M. Jallouli, and N. Derbel, “DVZ-based obstacle avoidance control of a wheelchair mobile robot”. In: 2011 IEEE International Conference on Mechatronics, 2011, 911–915, 10.1109/ICMECH.2011.5971244.
  • [2] L. Amouri, C. Novales, M. Jallouli, G. Poisson, and N. Derbel, “An effective DVZ-fuzzy logic pilot for a mobile robot using generic architecture”, International Journal of Vehicle Autonomous Systems, vol. 12, no. 3, 2014, 201–220, 10.1504/IJVAS.2014.062977.
  • [3] T. Carlson and Y. Demiris, “Increasing robotic wheelchair safety with collaborative control: Evidence from secondary task experiments”.In: 2010 IEEE International Conference on Robotics and Automation, 2010, 5582–5587, ,10.1109/ROBOT.2010.5509257.
  • [4] C. Dune, C. Leroux, and E. Marchand, “Intuitive human interaction with an arm robot for Approach”. ,In: 2007 IEEE 10th International Conference ,on Rehabilitation Robotics, 2007, 582–589, 10.1109/ICORR.2007.4428484.
  • [5] A. Ghorbel, M. J. Jallouli, and L. Amouri. “A ,HW/SW Implementation on FPGA of Absolute ,Robot Localization Using Webcam Data”. In: ,O. Kanoun, F. Derbel, and N. Derbel, eds., Sensors, Circuits and Instrumentation Systems. De Gruyter, Berlin, Boston, January 2017.[6] M. Ghorbel, R. Kadouche, and M. Mokhtari, “User & service modelling in assistive environment ,to enhance accessibility of dependent people”,Hammamet, Tunisia, 2007, 6.
  • [7] P. Jia, H. H. Hu, T. Lu, and K. Yuan, “Head gesture recognition for hands-free control of an inteligent wheelchair”, Industrial Robot, vol. 34, no. 1, 2007, 60–68, 10.1108/01439910710718469.
  • [8] L. Lapierre, P. Lepinay, and R. Zapata, “Simultaneous Path Following and Obstacle Avoidance Control of a Unicycle-type Robot”. In: ICRA: International Conference on Robotics and Automation, Roma, Italy, 2007, 2617–2622.
  • [9] S. P. Levine, D. A. Bell, L. A. Jaros, R. C. Simpson, Y. Koren, and J. Borenstein, “The NavChair Assistive Wheelchair Navigation System”, IEEE Transactions on Rehabilitation Engineering, vol. 7, no. 4, 1999, 443–451, 10.1109/86.808948.
  • [10] Y. Matsumoto, T. Ino, and T. Ogasawara, “Development of intelligent wheelchair system with face and gaze based interface”. In: Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No.01TH8591), 2001, 262–267, 10.1109/ROMAN.2001.981912.
  • [11] A. Mihailidis, P. Elinas, J. Boger, and J. Hoey, “An Intelligent Powered Wheelchair to Enable Mobility of Cognitively Impaired Older Adults: An Anticollision System”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 1, 2007, 136–143, 10.1109/TNSRE.2007.891385.
  • [12] J. d. R. Millán, F. Renkens, J. Mouriño, and W. Gerstner, “Noninvasive brainactuated control of a mobile robot by human EEG”, IEEE transactions on bio-medical engineering, vol. 51, no. 6, 2004, 1026–1033, 10.1109/TBME.2004.827086.
  • [13] R. C. Simpson, “Smart wheelchairs: A literaturę review”, Journal of Rehabilitation Research and Development, vol. 42, no. 4, 2005, 423–436.
  • [14] T. Taha, J. V. Miro, and G. Dissanayake, “POMDP-based long-term user intention prediction for wheelchair navigation”. In: 2008 IEEE International Conference on Robotics and Automation, 2008, 3920–3925, 10.1109/ROBOT. 2008.4543813.
  • [15] K. Tsui, H. Yanco, D. Kontak, and L. Beliveau, “Development and evaluation of a flexible interface for a wheelchair mounted robotic arm”. In: 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2008, 105–112, 10.1145/1349822.1349837.
  • [16] K. M. Tsui, H. A. Yanco, D. J. Feil-Seifer, and M. J. Matarić, “Survey of Domain-specific Performance Measures in Assistive Robotic Technology”. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, New York, NY, USA, 2008, 10.1145/1774674.1774693.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b3f6899-f375-4254-afd8-80f4f1fdfc6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.