PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Consistent design of PID controllers for an autopilot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A consistent approach to the development of tuning rules for course-keeping and path-tracking PID controllers for a ship autopilot are presented. The consistency comes from the observation that for each of the controllers the controlled plant can be modelled by an integrator with inertia. In the case of the course controller, it is the well-known Nomoto model. The PID controller may be implemented in series or parallel form, the consequence of which is a 2nd or 3rd order of the system, specified by a double or triple closed-loop time constant. The new tuning rules may be an alternative to the standard ones given in [1,2]. It is shown that, whereas the reference responses for the standard and new rules are almost the same, the new rules provide better suppression of disturbances such as wind, waves or current. The parallel controller is particularly advantageous. The path-tracking PID controller can provide better tracking accuracy than the conventional PI. Simulated path-tracking trajectories generated by a cascade control system are presented. The novelty of this research is in the theory, specifically in the development of new tuning rules for the two PID autopilot controllers that improve disturbance suppression.
Słowa kluczowe
Rocznik
Tom
Strony
78--85
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Poland
  • Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Poland
autor
  • Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Poland
Bibliografia
  • 1. T. I. Fossen, Guidance and Control of Ocean Vehicles (4th ed.). Chichester: Wiley, 1999, ISBN 0 471 94113 1.
  • 2. T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, 2011, doi: 10.1002/9781119994138.
  • 3. K. J. Åström, “Why use adaptive techniques for steering large tankers?,” International Journal of Control, vol. 32, no. 4, pp. 689-708, 1980, doi: 10.1080/00207178008922882.
  • 4. Z. Zwierzewicz, “On the ship course-keeping control system design by using robust feedback linearization,” Polish Maritime Research, vol. 20, no. 1, pp. 70-76, 2013, doi: 10.2478/ pomr-2013-0008.
  • 5. S. S. Hu, P. H. Yang, J. Y. Juang, and B. C. Chang, “Robust nonlinear ship course-keeping control by H∞ I/O linearization and μ-synthesis,” International Journal of Robust and Nonlinear Control, vol. 13, no. 1, pp. 55-70, 2003, doi: 10.1002/rnc.700.
  • 6. M. Rybczak, “Linear matrix inequalities in multivariable ship’s steering,” Polish Maritime Research, vol. 19, no. S1 (74), pp. 37-44, 2012, doi: 10.2478/v10012-012-0021-7.
  • 7. R. Zhang, Y. Chen, Z. Sun, F. Sun, and H. Z. Xu, “Path control of a surface ship in restricted waters using sliding mode,” IEEE Trans. Control Syst. Technol., vol. 8, no. 4, pp. 722-732, 2000, doi: 10.1109/87.852916.
  • 8. Z. Liu, “Adaptive sliding mode control for ship autopilot with speed keeping,” Polish Maritime Research, vol. 25, no. 4 (100), pp. 21-29, 2018, doi: 10.2478/pomr-2018-0128.
  • 9. A. Bhatt, S. Das, and S. E. Talole, “Robust backstepping ship autopilot design,” Journal of Marine Engineering and Technology, vol. 20, no. 1, pp. 34-41, 2021, doi: 10.1080/20464177.2018.1550030.
  • 10. A. Witkowska, M. Tomera, and R. Śmierzchalski, “A backstepping approach to ship course control,” International Journal of Applied Mathematics and Computer Science, vol. 17, no. 1, pp. 73-85, 2007, doi: 10.2478/v10006-007-0007-2.
  • 11. M. Asadi and A. Khayatian, “Adaptive backstepping autopilot for waypoint tracking control of a container ship in the presence of time-varying disturbances,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 14760-14765, 18th IFAC World Congress, 2011.
  • 12. A. Zirilli, G. N. Roberts, A. Tiano, and R. Sutton, “Adaptive steering of a container ship based on neural networks,” International Journal of Adaptive Control and Signal Processing, vol. 14, no. 8, pp. 849-873, 2000, doi: 10.1002/1099-1115(200012)14:8 3.0.CO;2-I.
  • 13. M. Tomera, “Ant colony optimization algorithm applied to ship steering control,” Procedia Computer Science, vol. 35, pp. 83-92, 2014, doi: 10.1016/j.procs.2014.08.087.
  • 14. L. Morawski, J. Pomirski, and A. Rak, ”Trajectory tracking control system for a ship,” in IFAC Conference on Control Applications in Marine Systems, pp. 251-255, 2004, doi: 10.1016/S1474-6670(17)31740-8.
  • 15. L. Moreira, T. I. Fossen, and C. Guedes Soares, “Path following control system for a tanker ship model,” Ocean Engineering, vol. 34, no. 14–15, pp. 2074-2085, 2007, doi: 10.1016/j. oceaneng.2007.02.005.
  • 16. T. I. Fossen, “Nonlinear maneuvering theory and pathfollowing control,” in Centre for Marine Technology and Engineering (CENTEC) Anniversary Book, C. Guedes Soares, Y. Garbatov, N. Fonseca, and A. P. Texeira, Eds. CRC Press, Taylor & Francis Group, 2012.
  • 17. P. Borkowski, “Adaptive system for steering a ship along the desired route,” Mathematics, vol. 6, no. 10, 2018, doi: 10.3390/ math6100196.
  • 18. Z. Zwierzewicz, “Robust and adaptive path-following control of an underactuated ship,” IEEE Access, vol. 8, pp. 120198- 120207, 2020, doi: 10.1109/ACCESS.2020.3004928.
  • 19. L. Moreira, T. I. Fossen, and C. Guedes Soares, Modeling, Guidance and Control of ‘Esso Osaca’ Model, Internal Report, No. 2005-2-W, Trondheim, 2005, doi: 10.3182/20050703-6-CZ-1902.01956.
  • 20. K. Kula and M. Tomera, “Control system of training ship keeping the desired path consisting of straight-lines and circular arcs,” TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, vol. 11, no. 4, pp. 711-719, 2017, doi: 10.12716/1001.11.04.19.
  • 21. D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. Doyle, Process Dynamics and Control (4th ed.), New York: Wiley, 2016, ISBN: 978-81-265-4126-3.
  • 22. ALPHASEAPILOT MFC Autopilot Operating Manual, Alphatron, https://www.alphatronmarine.com.
  • 23. FAP-2000 Autopilot Operator Manual, Furuno, https://www. furuno.com.
  • 24. Simrad AP70/80 Operator Manual, Simrad, https:// rowlandsmarine.co.uk.
  • 25. L. LI, Z. Pei, J. Jin and Y. Dai, “Control of Unmanned Surface Vehicle Along the Desired Trajectory Using Improved Line of Sight and Estimated Sideslip Angle,” Polish Maritime Research, vol. 28, no. 2, pp. 18-26, 2021, doi: 10.2478/pomr-2021-0017.
  • 26. L. Trybus, Z. Świder, and A. Stec, “Tuning Rules of Conventional and Advanced Ship Autopilot Controllers,” in ICA 2015: Progress in Automation, Robotics and Measuring Techniques, pp. 303-311, 2015, doi: 10.1007/978-3-319-15796-2_31.
  • 27. R. C. Dorf and R. M. Bishop, Modern Control Systems (11th ed.). Upper Saddle River, New York: Prentice Hall, 2008, ISBN 0-13-227028-5.
  • 28. Praxis Automation Technology B.V., http://www.praxisautomation.nl.
  • 29. IEC 61131-3 – Programmable controllers – Part 3: Programming languages, 2003, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b371f62-5282-405b-b3d0-c87b2ff76979
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.