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ABSTRACT

A consistent approach to the development of tuning rules for course-keeping and path-tracking PID controllers for 
a ship autopilot are presented. The consistency comes from the observation that for each of the controllers the controlled 
plant can be modelled by an integrator with inertia. In the case of the course controller, it is the well-known Nomoto 
model. The PID controller may be implemented in series or parallel form, the consequence of which is a 2nd or 3rd order 
of the system, specified by a double or triple closed-loop time constant. The new tuning rules may be an alternative to 
the standard ones given in [1,2]. It is shown that, whereas the reference responses for the standard and new rules are 
almost the same, the new rules provide better suppression of disturbances such as wind, waves or current. The parallel 
controller is particularly advantageous. The path-tracking PID controller can provide better tracking accuracy than 
the conventional PI. Simulated path-tracking trajectories generated by a cascade control system are presented. The 
novelty of this research is in the theory, specifically in the development of new tuning rules for the two PID autopilot 
controllers that improve disturbance suppression. 
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INTRODUCTION

The voyage of a sea-going ship can be divided into three 
phases, differing with respect to the steering mode:

manual steering

the ship along a route defined by waypoints.
For course-keeping, the PID algorithm is used in practice, 

with settings determined by a simple description of the ship 
dynamics, called a Nomoto model [1, 2]. The model is an 
integrator with inertia obtained from sea-trials, typically from 

a zig-zag manoeuvre. Tracking a straight-line component of 
the route, i.e. a single path, can be executed by a Line of Sight 
algorithm or by a cascade system where a primary controller, 
also PID, provides a reference course for the secondary one.

To indicate briefly other approaches developed for course 
and track control, note that more accurate models of a ship 
may include speed, load, rudder characteristics, the steering 
machine, and sea conditions. Speed may be taken into account 
by supplementing the PID with gain scheduling. The other 
factors require the application of nonlinear control methods 
developed in academic communities and tested on models or 
training ships. The first group of such methods applies control 
theory extensions, namely (sample references given only): model 



POLISH MARITIME RESEARCH, No 1/2023 79

reference adaptive control [3], linearization by feedback [4], 
H∞ robust control and matrix inequalities [5, 6], sliding mode 
[7, 8], and backstepping [9, 10]. The second group refers to 
solutions acquired from artificial intelligence, such as: fuzzy 
logic [11], neural networks [12] or other [13]. Track-keeping 
systems based on cascade control are discussed in [14, 15]. To 
deal with nonlinearities in such systems, the methods indicated 
above are applied, in particular: nonlinear control [16], adaptive 
[17] or robust [18]. Experiments with the guidance of model 
ships along multi-waypoint routes are described in [19, 20]. 

Coming back to the PID controller, note that standard tuning 
rules for the course-keeping autopilot are given in Fossen’s books 
[1, 2]. Using the Nomoto model, the author assumes that the 
closed-loop system, initially with a PD controller, should have 
a 2nd order transfer function with a specified natural frequency 
and a damping ratio close to 1. The I integral component added 
to the controller in the next step is given by a heuristic formula.

The tuning rules proposed here may be an alternative to the 
standard ones. Depending on series or parallel implementation 
of the PID algorithm [21], the rules are developed for an assumed 
double or triple closed-loop time constant, which differs in 
a specified ratio from the ship time constant. By changing the 
ratio, the controller operation may be adjusted to the sea state 
and phase of the voyage. Whereas reference responses for the 
standard and new tuning rules are almost the same, the new 
rules provide better suppression of disturbances, such as wind, 
waves or sea current.

Tuning rules for a PID track controller in the cascade system, 
not found in the available literature, is another problem being 
considered. It is shown that PID settings may be chosen by 
analogous rules to those for the course controller, which has the 
same type of the controlled plant description (integrator with 
inertia). So a consistent design of the two PID controllers for 
an autopilot capable of coastal and open waters navigation is 
a theoretical novelty of this research. The PID track controller 
is compared with a conventional PI.

One may add that, among commercial autopilots, the first 
group consists of simple course-keeping controllers whose 
settings are selected manually, e.g. [22]. The second group 
includes autopilots equipped with GPS that can steer the ship 
to a chosen waypoint or follow an indicated path [23]. The third 
group consists of advanced solutions with a built-in tracking 
mode and the capability of planning the voyage on ECS or ECDIS 
equipment [24]. 

The paper is organized as follows. The next section presents 
the development of new tuning rules for a PID course controller 
for both 2nd and 3rd order closed-loop systems. After unification 
of the design parameters for the standard and new rules, 
reference and disturbance responses are compared in Section 3. 
Tuning rules for the track PID and PI controllers in the cascade 
system are developed in Section 4, together with comparison of 
the responses. Section 5 presents sample simulated trajectories 
of a ship leaving a port and entering the initial paths of some 
voyages. Conclusions are given at the end.

COURSE CONTROLLER DESIGNS

The Nomoto model given below is a simple description of 
the ship dynamics for controlling the course φ by means of 
the rudder angle δ:

φ(s)
δ(s)  = k

s(Ts+1) , k = k0
V
V0

 , T = T0V
V0  .  (1)

The gain k is directly proportional to the ship speed V, 
whereas the time constant T – inversely. The initial values k0, T0 
are obtained from sea trials, typically from a zig-zag manoeuvre 
executed at a certain speed V0.

Fig. 1. Diagram of the course control system with Nomoto model of the ship
The course-keeping control system of Fig. 1 is considered, 

where φs
ref denotes a system reference, φref an internal course 

reference, and d an environmental cumulative disturbance. F is 
a unity gain low-pass filter for elimination of overshoot. The 
PID controller (regulator) has the form

R(s) = kP+ s
kI  + kDs = kP(1+ 1

TIs  + TDs)   (2)

TI = kP
kI

 ,  TD = kD
kP

It is assumed that the system will provide reference responses 
with critical damping and no overshoot. Recall that critical 
damping implies a multiple time constant of the closed-loop 
system. Note also that, due to (1) and (2), Fig. 1 represents 
in general a 3rd order system (while neglecting the reference 
filter F).

Before going into details, note that merely a compass is 
required for operation of the simple system from Fig. 1. If other 
sensors (anemometer, log, GPS) and software are available, the 
control quality may be improved by including feedforward 
inputs (wind, current) and by output filtering (waves).

SIMPLIFICATION TO 2ND ORDER

Let us impose the following restriction on the derivative 
time of the controller:

TD ≤ 4
TI           (3)

or, equivalently, k2
P ≥ 4kIkD. Then the PID controller can be 

written as

R(s) = kP (T1+T2)s
(T1s+1)(T2s+1)        (4)

TI = T1 + T2 ,  TD = T1+T2

T1T2  ≤ 4
TI

which is called a series form (real roots in the numerator) [21]. 
Now we can decrease the order of the system by cancellation 
of the time constant T, so
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T2 = T.        (5)

The open-loop transfer function (without the filter  F) 
becomes of 2nd order, namely

Gopen(s) = kPk (T1+T)s2
T1s+1  .    (6)

The requirements of critical damping and no overshoot 
imply that the transfer function of the whole system from Fig. 1 
(with F) can be specified as

Gspec(s) = (Tcls+1)2
1  , Tcl = r

T  .   (7)

The ratio r = T/Tcl is a design parameter. For r > 1, the closed-
loop time constant Tcl is r times smaller than the ship time 
constant T. r may be adjusted according to the sea state, so 
larger for calm sea, smaller for rough.

Gopen in (6) defines the following closed-loop transfer function 
(without F):

Gclosed(s) = (T1+T)s2+ kPk(T1s+1)
kPk(T1s+1)    (8) 

whose denominator, after making the last element equal to 1, 
should be the same as the denominator in the specification (7). 
This yields the equation

kPk
T1+T s2 + T1s + 1 = (Tcl s + 1)2.   (9) 

from which T1 and kP are found in terms of Tcl as

T1 = 2Tcl , kP = k
1

T 2
cl

T1+T  .    (10)

Since Tcl =T/r, hence by combining the expressions (4), (5) 
and (10), we first get kP , TI , TD and finally the PID gains kP , kI, 
kD given in Table 1. Looking at Gclosed in (8), it should be clear 
that the whole system will have the specified transfer function 
(7) if the reference filter F is given by

F(s) = T1s+1
1  ,  T1 = 2 r

T .    (11)

This completes the design of the course controller under 
the restriction (3).

Tab. 1. Tuning rules for PID course controller in series form

kP kI kD

kT
1

 r(r + 2) kT 2
r2

k
2r

3RD ORDER SYSTEM

The restriction (3) is now removed, so we remain with the 
representation (2) of the PID controller, called a parallel form 
(which admits complex roots in the numerator) [21]. The open-
loop transfer function becomes of 3rd order, so

Gopen(s) = k s2 (Ts+1)
k2

Ds2+kPs+kI     (12)

Accordingly, the specification is taken as

Gspec(s) = (T 
cʹls+1)3

1  ,  T 
cʹl = rʹ

T  .   (13)

To explain the need for another T 
cʹl and r ʹ, recall that for 

the 2nd order transfer function (7) the settling time of the step 
response is evaluated as 6Tcl (98% of set-point), whereas for 
the 3rd order (13) it is 8T 

cʹl. Since we expect the two designs to 
provide the same settling time despite the different orders, we 
have to take

r ʹ = 6
8 r = 3

4 r.       (14)

After development as before, the equation involving a closed-
loop denominator and the denominator from (13) becomes

kkI

T s3 + kkI

kkD+1s2 + kkI

kkPs + 1 = (T 
cʹls + 1)3.  (15)

The corresponding tuning rules following from the above are 
in Table 2. The whole system is equivalent to the specification 
(13) for the filter

F(s) = kDs2+ kPs+kI

kI       (16)

We repeat that the settling times of the two designs are the 
same for r ʹ given by (14).

Tab. 2. Tuning rules for PID course controller in parallel form

kP kI kD

kT
3rʹ2

kT
rʹ3

k
3rʹ–1

r ʹ = 3
4 r

COMPARISON WITH STANDARD RULES

In the fundamental books [1, 2], the following transfer 
function

Gspec(s) = s2+2ξωns+ω2
n

ω2
n  , ξ  [0.8, 1]   (17)

specifies the course-keeping control system, with ωn and ξ as 
design parameters. First, a PD controller is designed, to which 
an I component given by a heuristic expression (attributed to 
Balchen) is attached in the next step. The tuning rules from 
[1, 2], called standard here, are as follows:

kP = k
Tω2

n  , kD = k
1 (2ξTωn –1), kI = k 10

T ω2
n . (18)

Comparison of the responses for such rules with those from 
Tables 1 and 2 requires unification of the design parameters. 
The closed-loop time constant from (7) corresponds to the 
inverse of the modulus of the real part of the denominator 
roots in (17), i.e.

Tcl = ξωn

1  .      (19)
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controller and Line of Sight (LOS) corrective algorithm. In 
particular, while the ship is at the beginning of a path connecting 
two waypoints, the reference φs

ref is set to the bearing to the target 
waypoint, i.e. to LOS. If there is no side wind or current, the 
course controller will bring the ship to the target after some 
time. However, the disturbances make the ship go off the path, 
which changes the bearing to the target, so a suitable correction 
of φs

ref following the new LOS is required. After a number of 
such corrections, the ship finally comes to the target, although 
along a trajectory looking like an arc hanging from the path. 
The objective of the advanced path-tracking algorithms [14-
18, 25] is to remove the arc completely or reduce it by including 
integration into the corrections. 

PID TRACK CONTROLLER

The diagram of the proposed cascade system is shown in 
Fig. 3 (compare [26]). PIDT denotes the track controller, PIDC 
the course controller, and the final element V/s converts the 
course deviation φ–φs

ref plus disturbance dT into a Cross-Track 
Error XTE dependent on the speed V [1, 2]. dT represents side 
wind or current which pushes the ship from the path. The 
actual error XTE is determined by the navigation system of the 
ship involving ECS or ECDIS equipment. The development of 
tuning rules for PIDT is considered here.

Fig. 3. Cascade tracking system with a path course φs
ref

To evaluate the dynamics of the plant controlled by PIDT, 
assume that the track controller is in manual control mode 
and its output, normally zero, is set to ΔφT to initiate a pull-out 

Since Tcl=T/r, so ωn=r/(ξT), which, when inserted into (18), 
converts the standard rules to the following form:

kP = kT ξ 2
1 r 2  , kD = k

1  r(2r–1), kI = kT 2 10ξ 2
1 r 3

 . (20)

The behaviour of a control system for different tuning rules 
is usually compared with respect to reference and disturbance 
responses. Although the reference filter is not specified in 
[1, 2], we shall take F(s)=1/(TDs+1), TD=kD/kP, following the PD 
design. The general output φ and control δ reference responses 
normalized with respect to the product kT, so dimensionless 
and independent from the parameters of the Nomoto model, 
are shown in Fig. 2a for r=2 and ξ=0.8 or 1 (rʹ=r · 4/3=~2.67). As 
could be expected, the output responses in the left part almost 
overlap (2.5% overshoot for ξ=0.8). The differences in the control 
plots (right part) are modest.

There are, however, considerable differences between the 
disturbance responses in Fig. 2b. The rules from Table 1, and 
particularly from Table 2, are beneficial with respect to both 
smaller deviation and shorter decay time. In particular, the 
normalized decay times determined for 10% of the maximum 
deviations are 13, 10, 5.5 and 3.5, while going in Fig. 2b from  
ξ=1 down to Tab. 2.

We add that, as in industrial controllers, the derivative part 
of the PID algorithm has been implemented as kDs/(TDs/D+1) 
with D=10.

TRACK CONTROLLER  
IN A CASCADE SYSTEM

Before examination of the track controller, we remind [1,2] 
the reader that a basic track-keeping system for steering a ship 
along a route defined by waypoints typically involves a course 

Fig. 2. Reference (a) and disturbance (b) output and control normalized responses for the standard settings [1,2] and settings from Table 1 and Table 2
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manoeuvre. Then the PIDC controller will begin to change 
course, as shown by the plot in Fig. 4. The dotted straight line 
at the right part is described by V · ΔφT · (t–TT) with ΔφT in 
radians and the time TT read out after drawing the line.

Fig. 4. Course control system pull-out response with XTE output
It should be clear that such pull-out response can be 

considered as generated by an integrator with inertia, with 
the time constant TT, so

ΔφT(s)
XTE(s) = s(TT s+1)

V
      (21)

This is the transfer function of the same type as the Nomoto 
model (1), so we can adapt the tuning rules developed before 
after a suitable change of notation.

So let
Tcl,T = TT

rT
        (22)

denote the time constant of the cascade system with 
some ratio rT of the pull-out and closed-loop time constants  
(TT /Tcl,T). The PIDT tuning rules given in Table 3 correspond 
to Table 1 and (21), (22).

Tab. 3. Tuning rules for PIDT tracking controller obtained from pull-out response

kP kI kD

VTT

1
 rT(rT + 2) VT 2

T

r2
T

V
2rT

Note that the above development requires only a properly 
operating course controller to execute the pull-out manoeuvre, 
without considering its settings. So the standard settings (20) or 
any other that ensure stable operation may be appropriate. In 
particular, for the PIDC controller tuned according to Table 1, 
the closed-loop transfer function is specified by (7). It is easy to 
show [27] that then TT in Fig. 4 equals two time constants Tcl , so

TT = 2Tcl = 2 T
r        (23)

Using this in Table 3 results in the tuning rules for the 
track controller PIDT given in Table 4. Note that the pull-out 
manoeuvre is not needed in this case, only the ship time constant 
T obtained from the initial zig-zag.

Tab. 4. Tuning rules for PIDT tracking controller obtained from the Nomoto model

kP kI kD

2VT
1  rrT(rT + 2) 4VT 2

r2 r2
T

V
4rT

A similar simplification applies to PIDC tuned according to 
Table 2. Here TT=3Tcʹl, with Tcʹl=T/rʹ. 

Fig. 5. Cascade system and track controller normalized outputs 
while changing a path and when disturbance occurs

Time diagrams of the normalized track error XTE and the 
track controller output ΔφT for a step change of the bearing 
course φs

ref at the beginning and the side disturbance dT at  
t/T=20 are shown in Fig. 5 for the tunings from Table 3 and 
the data r=2, rT=1, φs

ref = dT =0.1 [rd]. In both cases, the cascade 
system brings the XTE error to zero. For comparison, below we 
indicate that the normalized maximum deviation XTEmax due 
to dT is close to 0.05. Note also that, for r, rT as above, the time 
constant Tcl of the internal loop in Fig. 3 equals T/2 (from (7)), 
whereas Tcl,T of the outer loop is T (from (22), (23)). So one may 
say that the track-keeping here is two times “slower” than the 
course-keeping.

COMPARISON WITH CONVENTIONAL PI

According to [1, 2], a conventional track-keeping system 
based on an existing course autopilot involves a PI controller. 
Since PI tuning rules are not given there, we shall derive them 
briefly to compare the operation of PI with PID.

First, note that the course PIDC controller in Fig. 3 provides 
φ=~ φs

ref, so for an approximate derivation the internal loop may 
be dropped altogether. Hence, for the PI track controller, the 
open-loop transfer function becomes

Gopen(s) = kP(1+ TI s
1  )V

s       (24)

Let TPI be an assumed double time constant of the closed-
loop system. By standard calculations we get

kP = TPIV
2  , TI = 2TPI      (25)

The two controllers will be compared by taking TPI equal to 
the time constant Tcl,T of the PID system, i.e. to

Tcl,T = rrT

2T          (26)

from (22), (23). The data r=2, rT=1 from the example in Fig. 5 
give Tcl,T=T=TPI for the PI settings in (25). Unfortunately, for 
such settings the PI system oscillates (not shown), being very 
close to the stability limit.

The two times longer time constant TPI=2T which corresponds 
to rT=0.5 yields a PI response with decaying oscillation as in 
Fig. 6a (time axis extended). Smoothing of the PI response is 
obtained for TPI=4T, when the two responses shown in Fig. 6b 
are fairly similar. In this case, the outer loops are eight times 
“slower” than the internal course-keeping. The XTEmax error 
due to the disturbance dT is close to 0.2 for PI, so it is greater 



POLISH MARITIME RESEARCH, No 1/2023 83

than four times the error of 0.05 for PID in Fig. 5. So the use of 
PID instead of conventional PI may be advised if particularly 
accurate path-keeping is required.

Fig. 6. Cascade system responses for PID and PI track controllers: 
a)TPI=2T, b) TPI=4T

TRACKING TRAJECTORIES

Simulated trajectories for leading the ship onto three different 
paths treated as the first components of some voyages are shown 
in Figs. 7a, b, c. It is assumed that the ship may only leave the 
port going north, and the autopilot should bring it onto the 
path as soon as possible. Each path is defined by its geographic 
orientation, e.g. NW, and location with respect to the port. The 
first character of the orientation indicates in which of the two 
opposite directions (N or W) the ship is going to sail. So we 
have according to the figures:

a) NW, path coming out of the port
b) NE, path runs ahead of the port
c) SE, as above.

The trajectories represent simulation of the Nomoto ship for 
the data k=0.7 [(deg/s)/deg], T=60 [s], V=6[m/s] and design 
parameters r=2, rT=1. Controller settings are selected according 
to the rules in Tables 1 and 3. Distances in the figures are given 
in meters. 

In the case of Fig. 7a, the ship after leaving the port turns west 
and enters the nearby path. The trajectory in Fig. 7b begins by 
reaching the vicinity of the path followed by proper tracking. 
Fig. 7c shows a similar situation, but due to the opposite 
direction of the voyage the ship begins with a U-turn.

Software implementing course control and path-tracking is 
currently being tested in a prototype autopilot whose operator 
panel is shown in Fig. 7d [28]. The software is written in ST 
language of the IEC 61131-3 standard [29]. The button HCS 
activates course-keeping (heading). Parameters set in SETUP 
include the ratios r and rT.

CONCLUSIONS

New tuning rules for course and path-tracking PID controllers 
are developed for an autopilot. By using the Nomoto model of 
a ship, course-keeping is designed for critical damping, with 
a double or triple closed-loop time constant. The ratio of the 
open-loop to the closed-loop time constant is a design parameter. 
While the reference responses for the well-established standard 
settings [1, 2] and for the new ones are practically the same, 
the new rules provide better suppression of the environmental 

Fig. 7. a,b,c – Trajectories for sailing the ship onto the path,  d – operator panel of the prototype autopilot [28]
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disturbances, particularly for the 3rd order design.
The cascade control system applied for track-keeping is based 

on the observation that its internal part is described by a transfer 
function of the same type as the Nomoto model. This allows the 
same tuning rules to be used for both the course and the track 
controllers. Description of the internal part of the system may 
be obtained from a pull-out manoeuvre. Due to the capability 
of fast operation, the PID track controller can provide better 
suppression of disturbances than the conventional PI.

Simple tables with the tuning rules developed here involve 
the data of the Nomoto model, speed, and ratios of the time 
constants as the design parameters. The parameters can be 
adjusted on-line according to environmental conditions and the 
phase of the voyage. To summarize, the novelty of this research 
is in the theory, particularly in new tuning rules for the two 
PID autopilot controllers that improve closed-loop responses.
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