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Abstract. In this paper we show the construction of nonseparable compactly supported bi-
variate wavelets. We deal with the dilation matrix A =

[
0 2
1 0

]
and some three-row coefficient

mask; that is a scaling function that satisfies a dilation equation with scaling coefficients
which can be contained in the set {cn}n∈S , where S = S1 × {0, 1, 2}, S1 ⊂ N, ]S1 <∞.
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1. INTRODUCTION

The theory of compactly supported wavelets in L2(R) is known and was well-developed
mainly by Daubechies [7,8]. Such wavelets were applied in various branches of science
and can be obtained by using constructive methods. This theory was generalized to
higher dimensions, in particular to L2(R2) case. Simple examples of bivariate wavelets
with compact support involve tensor products of compactly supported wavelets and
scaling functions, constructed in an L2(R) space. Of course this method produces so
called separable wavelet bases which are not interesting from a theoretical point of
view. This is because properties of such basis functions mostly arise from features of
univariate wavelets. Nevertheless separable wavelets are a very useful tool in signal
analysis. For example the separable transform is easy to implement by using two
one-dimensional wavelet transforms separately, that is we can adapt the Mallat al-
gorithm from the one-dimensional case. Since there are many algorithms in this field
based on wavelet transform (coding algorithms), it is significant to show advantages
and defects of applying separable and nonseparable wavelets, that is, wavelets (wavelet
bases) which are not separable.
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Nonseparable compactly supported wavelets have been studied by many authors.
The construction of such wavelets in L2(R2) was given by Cohen and Daubechies
[6]. More examples can be found in [9], where Gröchenig and Madych showed how
to obtain wavelet bases of Haar-type in L2(Rn) using multiresolution analysis with a
scaling function which is a characteristic function of a special compact set. Interest-
ing constructions were given also by Ayache in [1,2], where the author demonstrated
some classes of multi-dimensional filter banks generating nonseparable, compactly
supported wavelet bases of arbitrarily high regularity. Also “polyphase components”
methods lead to nonseparable wavelets with compact support, which was shown for
the two- and three-dimensional case by Kovačević and Vetterli [10]. Belogay and Wang
[3] constructed nonseparable compactly supported wavelets with arbitrarily high ac-
curacy using two-row coefficient masks. The result was obtained in a two-dimensional
case for every dilation matrix A with q = |detA| = 2. In particular this construction
can be applied to the quincunx matrix

[
1 −1
1 1

]
which has been used in applications

concerning signal processing. It is known that separable wavelets show some defects
and one of them is unpleasant image decomposition which reveals similarity in the
same direction. Since nonseparable wavelets lead to more isotropic analysis we hope,
that they become much useful. Mentioned quincunx matrix A plays an important
role here. First of all the equality q = 2 means that we deal only with one wavelet
which is nonseparable and there are two filters (the image is split into two subsets
in a one-level image decomposition). As it was said, to show the predominance of
nonseparable wavelets it is necessary to describe the difference between results of
algorithms of image compression and reconstruction. There are several papers which
give such a comparison. In [17] four different types of nonseparable wavelets associated
with quincunx matrix and dilation matrix

[
2 0
0 2

]
were tested on different images by

using a nonseparable wavelet transform and compared with a separable wavelet by
applying a tensor product wavelet transform based on univariate wavelets (CDF53,
DB97). As it was shown, in still image compression the nonseparable wavelets reveal
better ascendant performance provided that they have the same number of vanish-
ing moments as a tensor product of univariate wavelets. Another comparison was
stated in [15] where authors tested different types of coding algorithms i.e. SPIHT
and binary tree coding algorithms using two-dimensional separable and nonseparable
wavelet transforms. Similarly to [17] computation were done via quincunx sampling
(quincunx lifting shame was applied). Results show that compared with the SPIHT
algorithm based on the separable wavelet transform, application of the nonsepara-
ble wavelet transform with the binary tree coding algorithm increases the quality
of reconstructed images. Valuable features of nonseparable wavelets associated with
quincunx dilation matrix were demonstrated in [12], where in addition to construc-
tion of filter banks, the authors gave a new method for merging panchromatic and
multi-spectral (MS) images. An important fact is that this algorithm based on a non-
separable wavelet frame transform creates the fused MS image which preserves better
spectral information and higher spatial resolution than the MS image created by the
fusion method based on a discrete wavelet frame transform and improved intensity
hue-saturation mergers. Since q = 2, the image is split only into two subsets in each
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level decomposition and as a result, this method requires only the half of the amount
of computation used in the fused method based on a discrete wavelet transform with
dilation matrix

[
2 0
0 2

]
. It is worth mentioning that the theory of wavelets in L2(Rn)

has been extended to L2(Rn)p space. For example in [5] generalized definitions of fun-
damental notions were given, that is the definition of vector-valued multiresolution
analysis, orthogonal vector-valued wavelets etc. Authors presented the construction
of vector-valued wavelet packet bases of L2(Rn)p and show several examples of such
systems. The results were obtained for every integer dilation a ∈ N, a ≥ 2. More
general dilations and criterions concerning compactly supported vector-valued scaling
functions can be found in earlier works like [11].

The purpose of this paper is to give a generalized method for constructing nonsep-
arable compactly supported wavelets in L2(R2), which allows new types of coefficient
masks from those presented in [3]. We focus on the dilation matrix A =

[
0 2
1 0

]
and

the standard multiresolution analysis [13,16]. Although the main result concerns this
particular dilation matrix the method presented in [3] shows that it may be possible
to give an extension of obtained results to the quincunx matrix or even any 2 × 2
dilation matrix with q = 2. Since wavelet coefficients are determined by scaling coef-
ficients [14], this construction gives us a class of filter banks which consist of only a
low-pass filter and a high-pass filter. Likewise in cited works, the application of wavelet
transforms based on presented filters could improve recent results or give valuable al-
gorithms e.g. reduces the amount of operations necessary when using dilation

[
2 0
0 2

]
.

The technique applied to produce two-dimensional filter banks is different from the
approach proposed in [10, 12, 15], where methods of polyphase factorization, block
central symmetric orthogonal matrices, DFT and IDFT filtering were used. First we
extend the orthonormality condition to cases of generalized coefficient masks. Then we
parametrize the class of polynomials satisfying this condition and construct low-pass
filters. The key is to solve the system of nonlinear functional equations in one complex
variable z ∈ C by parametrizing solutions with three parameters, where two of them
are algebraic polynomials and third is a Laurent polynomial. To ensure that obtained
scaling function is orthonormal we need to check additionally Cohen’s criterion [4]. It
is done in Section 3, where we use the general construction from Section 2 to produce
the specific coefficient masks generating nonseparable compactly supported wavelets.
Theorem 2.6 which was stated in Section 2 represents the main conclusion and is some
generalization of results from [3].

2. THE CONSTRUCTION
OF NONSEPARABLE COMPACTLY SUPPORTED WAVELETS

We assume, that ϕ ∈ L2(R2) is a real valued function which satisfies the so called
dilation equation with an expanding matrix A ∈M2×2(Z), |detA| = 2, that is,

ϕ(x) = 2
∑
n∈Z2

cnϕ(Ax− n), (2.1)
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where cn ∈ R, cn = 0 for almost every n ∈ Z2 and
∑
n∈Z2 cn = 1. We say that cn

are the scaling coefficients of ϕ. They define the trigonometric polynomial m(ξ) =∑
n∈Z2 cne

−i〈ξ,n〉, ξ = (ξ1, ξ2) ∈ R2 such that the Fourier transform of ϕ satisfies
equation

ϕ̂(ξ) = m(B−1ξ)ϕ̂(B−1ξ),

where B = AT . Then the polynomial m(ξ) defines coefficient mask M(z, w),
(z, w) ∈ C2 by the equation m(ξ1, ξ2) = M(e−iξ1 , e−iξ2). Clearly we may write
m(0) =M(1, 1) = 1 and M(z, w) =

∑
(m,n)∈Z2 c(m,n)z

mwn.
If we work with a multiresolution analysis, we say that ϕ is a scaling function which

additionally gives us (by definition of MRA) orthonormality of the set {ϕ(x− n)}n∈Z2 .
For our purpose we consider the dilation matrix A =

[
0 2
1 0

]
and a three-row coefficient

mask M(z, w) of the following form:

M(z, w) = A(z) +B(z)w +G(z)w2, (z, w) ∈ C2, (2.2)

where A(z), B(z), G(z) are polynomials of one complex variable. As we know [4,16],
if ϕ is a scaling function then the orthonormality condition is satisfied, that is, for all
k ∈ Z2 we have equality

2
∑
n∈Z2

cncn+Ak = δ0,k, (2.3)

where δ0,k is the Kronecker delta. Additionally this condition is equivalent to the
identity PM (z, w)+PM (−z, w) = 1, (z, w) ∈ C2, zw 6= 0, whereM is the three-row co-
efficient mask and autocorrelation PW (z1, z2), z1z2 6= 0 of some polynomialW (z1, z2),
(z1, z2) ∈ C2 with real coefficients is of the form PW (z1, z2) =W (z1, z2)W (z−11 , z−12 ).
By “orthonormal coefficient mask” we mean that condition (2.3) is satisfied. These
assumptions and facts lead us to the first conclusion.

Fact 2.1. The three-row coefficient maskM is orthonormal if and only if the following
equations are satisfied:

PA(z) + PA(−z) + PB(z) + PB(−z) + PG(z) + PG(−z) = 1, (2.4)

A(z−1)G(z) +A(−z−1)G(−z) = 0, (2.5)

A(z−1)B(z) +B(z−1)G(z) +A(−z−1)B(−z) +B(−z−1)G(−z) = 0, (2.6)

where for a univariate polynomial W (z), z ∈ C, we define

PW (z) :=W (z)W (z−1), z 6= 0.

The next step is to replace (2.4)-(2.6) by an equivalent condition on A, B, G. Of
course the equality (2.5) and condition G(0) 6= 0 imply that A is a polynomial of odd
degree. The next proposition is an observation from [3] and can be adapted to our
case.

Proposition 2.2 ([3]). Let G(0) 6= 0. Polynomials A, G satisfy the condition (2.5) if
and only if there exist an odd integer ν ≥ degA and polynomials s, q, l with real coeffi-
cients such that zνA(z−1) = s(z2)l(z), G(z) = q(z2)l(−z), where gcd(l(z), l(−z)) = 1.
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Thus we must show that the condition (2.6) also could be described by some
generalized version of the previous proposition. Indeed, we can formulate the following
statement.

Lemma 2.3. Let G(0) 6= 0. Then polynomials A, B, G satisfy conditions (2.5), (2.6)
if and only if there exist an odd integer ν ≥ degA, ν ≥ degB, polynomials s, q, l with
real coefficients and a Laurent polynomial s̃ with real coefficients such that:

(i) zνA(z−1) = s(z2)l(z), (ii) G(z) = q(z2)l(−z),

(iii) B(z) =
s(z−2)s̃(z2)l(−z)− zνq(z2)s̃(z−2)l(z−1)

Ps(z2) + Pq(z2)
,

where gcd(l(z), l(−z)) = 1.

Proof. If polynomials A, B, G satisfy (2.5), (2.6) and G(0) 6= 0, then Proposition 2.2
leads us to the following equalities:

1) zνA(z−1) = s(z2)l(z), 2) G(z) = q(z2)l(−z),

where ν ≥ degA, ν ≥ degB is an odd integer, s, q, l are polynomials with real
coefficients and gcd(l(z), l(−z)) = 1.

Applying equality 1) and 2) to the equation (2.6) we obtain

l(z)P1(z) = l(−z)P2(z), (2.7)

where

P1(z) := z−νs(z2)B(z) +B(−z−1)q(z2),
P2(z) := z−νs(z2)B(−z)−B(z−1)q(z2).

Observe that P1(−z) + P2(z) = 0. By virtue of (2.7), we may also write
[zνP1(z)]/l(−z) = K(z), [zνP2(z)]/l(z) = W (z), where K, W are polynomials with
real coefficients. Thus we can say that K, W are some Laurent polynomials. Addi-
tionally the equation (2.7) leads us to the conclusion K(z) = W (z). Moreover, the
following equalities are satisfied:

l(z)W (z)− l(z)K(−z) = zνP2(z) + zνP1(−z) = zν [P1(−z) + P2(z)] = 0.

Thus we have relations K(z) =W (z) = K(−z), that is W (z) = K(z) = s̃(z2), where
s̃ is a Laurent polynomial with real coefficients. Now we can rewrite the equation (2.7)
in an equivalent form

z−νs(z2)B(−z)−B(z−1)q(z2) = s̃(z2)l(z)z−ν ,

where s̃ is some Laurent polynomial with real coefficients. Multiplying both sides of
the above equation by zνs(z−2) we obtain:

s(z−2)s(z2)B(−z) = zνs(z−2)B(z−1)q(z2) + s(z−2)s̃(z2)l(z) =

= zν [s̃(z−2)l(−z−1)− z−νB(−z)q(z−2)]q(z2)+
+ s(z−2)s̃(z2)l(z).
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Therefore polynomial B(z) satisfies equation

[s(z2)s(z−2) + q(z2)q(z−2)]B(−z) = s(z−2)s̃(z2)l(z) + zνq(z2)s̃(z−2)l(−z−1).

The previous relation determines polynomial B(z), that is,

B(z) =
s(z−2)s̃(z2)l(−z)− zνq(z2)s̃(z−2)l(z−1)

Ps(z2) + Pq(z2)
,

where s, q, l are polynomials with real coefficients, s̃ is a Laurent polynomial with
real coefficients and ν ≥ degA, ν ≥ degB is an odd integer.

It is easy to see that if polynomials A, B, G are described by (i), (ii), (iii) with an
odd integer ν ≥ degA, ν ≥ degB, then equalities (2.5) and (2.6) are satisfied.

Observe that Lemma 2.3 gives us a full parametrization of function A, B, G which
satisfy equations (2.5) and (2.6). In this case we can use polynomials s, q, l and s̃
as parameters. Obviously A, B, G have to be polynomials, thus the parametrization
must be chosen properly. Via (i), (ii) it is easy to do that for A and G, but (iii) needs
to be considered separately. For that purpose we take the parametrization:

s̃(z2) := T (z2)p(z2), T (z2) := Ps(z2) + Pq(z2),

where s, q, p are polynomials with real coefficients. We have the equality
T (z−2) = T (z2), thus B(z) takes the following form:

B(z) = s(z−2)p(z2)l(−z)− zνq(z2)p(z−2)l(z−1).

This shows that fixing s, q, l we are able to choose polynomial p and an odd integer
ν ≥ degA, ν ≥ degB such that the above formula defines a polynomial. Clearly ν can
be arbitrarily large thus in front of the arbitrariness of s, q, l, relations (i) and (ii)
also may define various polynomials A, G. This brings us to the next conclusion.

Corollary 2.4. Assuming that s, q, l, p are polynomials with real coefficients, the
solution of equations (2.5), (2.6) can be described as follows:

(i) zνA(z−1) = s(z2)l(z), (ii) G(z) = q(z2)l(−z),
(iii) B(z) = s(z−2)p(z2)l(−z)− zνq(z2)p(z−2)l(z−1),

where s, q, l, p and an odd integer ν ≥ degA, ν ≥ degB are chosen such that the
above formulas define polynomials.

Since our main result is related to the scaling function ϕ, we have to assume that
polynomials A, B, G in Lemma 2.3 satisfy the additionally condition (2.4). More
precisely, for that purpose we take the parametrization given in Corollary 2.4. The
below lemma gives us a description of such polynomials.
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Lemma 2.5. Let G(0) 6= 0. If polynomials A, B, G are given by (i), (ii) and (iii) in
Corollary 2.4, then the equation (2.4) is satisfied if and only if the following conditions
hold:

Ps(z2) = b− Pq(z2), (2.8)

Pl(z) + Pl(−z) =
1

(1 + c2)b
, (2.9)

where b, c ∈ R, b > 0, c 6= 0 and p(z2) = cz2k, k ∈ N.

Proof. Formulas (i), (ii), (iii) in Corollary 2.4 imply that polynomials A, B, G satisfy
equations:

1) PA(z) + PA(−z) = Ps(z2)[Pl(z) + Pl(−z)],
2) PB(z) + PB(−z) = Pp(z2)[Ps(z2) + Pq(z2)][Pl(z) + Pl(−z)],
3) PG(z) + PG(−z) = Pq(z2)[Pl(z) + Pl(−z)].

Putting 1), 2) and 3) together we observe that (2.4) is equivalent to the following
equation

[1 + Pp(z2)][Ps(z2) + Pq(z2)][Pl(z) + Pl(−z)] = 1.

It shows that each expression 1+Pp(z2), Ps(z2)+Pq(z2)must be a constant. Therefore
we conclude that p(z2) = cz2k and polynomials s, q, l are given by (2.8), (2.9), where
k ∈ N and b, c ∈ R, b > 0, c 6= 0.

In our case the general theory of wavelets shows that to construct a compactly sup-
ported scaling function ϕ of some multiresolution analysis and its associated wavelet
ψ with compact support, we need to construct an orthonormal coefficient mask M
such, that the trigonometric polynomial m(ξ1, ξ2) =M(e−iξ1 , e−iξ2) satisfies Cohen’s
criterion, that is, for all j ≥ 1:

m(B−jξ) 6= 0 for all ξ ∈ K, (2.10)

where B = AT and K ⊂ R2 is a compact fundamental domain of the lattice 2πZ2

[4, 16]. Therefore we are ready to formulate the below theorem.

Theorem 2.6. Let A, B, G be polynomials defined as follows:

(i) zνA(z−1) = s(z2)l(z), (ii) G(z) = q(z2)l(−z),
(iii) B(z) = s(z−2)p(z2)l(−z)− zνq(z2)p(z−2)l(z−1),

where p(z2) = cz2k, c ∈ R, c 6= 0, k ∈ N and s, q, l are polynomials with real
coefficients which satisfy equations:

Ps(z2) = b− Pq(z2),

Pl(z) + Pl(−z) =
1

(1 + c2)b
,
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with b ∈ R, b > 0. If m(ξ1, ξ2) = M(e−iξ1 , e−iξ2) satisfies Cohen’s criterion (2.10),
whereM is a three-row coefficient mask given by (2.2), then ϕ is a compactly supported
scaling function of some multiresolution analysis and its associated wavelet ψ has a
compact support.

We must note that we deal with a nonseparable coefficient maskM , thus using the
same argumentation as in [3] the previous theorem gives us a method for constructing
nonseparable compactly supported wavelets.

3. EXAMPLES OF NONSEPARABLE COEFFICIENT MASKS

The next step is to find such parametrization of polynomials A, B, G from
Theorem 2.6, such that Cohen’s criterion is satisfied. In our case it is sufficient to
show that polynomial m(ξ) satisfies the following condition:

m(ξ) 6= 0 for all ξ ∈ K1 =
[
− π

2
,
π

2

]
×
[
− π, π

]
. (3.1)

Therefore consider such a trigonometric polynomial m(ξ), ξ ∈ R2, where l(z) is a
constant and assume that m(ξ1, ξ2) = 0 for some (ξ1, ξ2) ∈ K1. The previous theorem
shows that m(ξ) can be expressed by

m(ξ1, ξ2) = l(1)
[
s(ei2ξ1)α(ξ1, ξ2) + q(e−i2ξ1)β(ξ1, ξ2)

]
, (3.2)

where l(z) = l(1) = [2(1 + c2)b]−
1
2 , b, c ∈ R, b > 0, c 6= 0 and trigonometric

polynomials α, β are defined as follows:

α(ξ1, ξ2) := e−iνξ1 + ce−i(2kξ1+ξ2), β(ξ1, ξ2) := e−i2ξ2 − ce−i(νξ1−2kξ1+ξ2).

Since m(ξ1, ξ2) = 0 by assumption, for some (ξ1, ξ2) ∈ K1, the below equality holds∣∣s(ei2ξ1)∣∣2∣∣α(ξ1, ξ2)∣∣2 =
∣∣q(ei2ξ1)∣∣2∣∣β(ξ1, ξ2)∣∣2. (3.3)

By simple computation, we obtain∣∣α(ξ1, ξ2)∣∣2 = 1 + c2 + 2c cos[(ν − 2k)ξ1 − ξ2],∣∣β(ξ1, ξ2)∣∣2 = 1 + c2 − 2c cos[(ν − 2k)ξ1 − ξ2].

Then putting z = eiξ1 in (2.8) we get the equation
∣∣s(ei2ξ1)∣∣2 + ∣∣q(ei2ξ1)∣∣2 = b. More-

over, under an extra assumption c /∈ {−1, 1} inequalities
∣∣α(ξ1, ξ2)∣∣ > 0,

∣∣β(ξ1, ξ2)∣∣ > 0
hold, thus (3.3) leads us to the conclusion that

∣∣s(ei2ξ1)∣∣2 = b

(
1

2
− c

1 + c2
cos[(ν − 2k)ξ1 − ξ2]

)
, (3.4)

where (ξ1, ξ2) ∈ K1 and c ∈ R \ {−1, 0, 1}.
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These considerations bring us to the next statement.

Corollary 3.1. Let A, B, G be polynomials defined by (i), (ii), (iii) of Theorem 2.6,
where l(z) = [2(1 + c2)b]−

1
2 , p(z2) = cz2k, b > 0, c ∈ R \ {−1, 0, 1}, k ∈ N, and s, q

satisfy equation (2.8). If m(ξ1, ξ2) = 0 for some (ξ1, ξ2) ∈ K1, then the equality (3.4)
holds.

Still we are going to determine values s(1), q(1) such that the conditionm(0, 0) = 1
holds. Since the equation (2.8) is satisfied we need to solve the following system:{

(1 + c)s(1) + (1− c)q(1) =
√
2(1 + c2)b,

s2(1) + q2(1) = b.

The solution of that system is unique, thus by simple computation we obtain
s(1) = (1+c)

√
b√

2(1+c2)
, q(1) = (1−c)

√
b√

2(1+c2)
. To show an example of polynomial q we may take

q(z2) = z2−1
n + q(1), n ∈ N. Observe that taking n large enough and c ∈ (0, 1), the

polynomial s(z) can by defined by the relation (2.8) for |z| = 1. Indeed, we have∣∣s(ei2ξ1)∣∣2 =
2

n2
[1− nq(1)] cos 2ξ1 + b− 1

n2
−
[
q(1)− 1

n

]2
=

=
4

n2

[
n(1− c)

√
b√

2(1 + c2)
− 1

]
sin2 ξ1 + b

(
1

2
+

c

1 + c2

)
.

(3.5)

Now we need to show that s, q are chosen properly, that is polynomial m(ξ) defined
by (3.2) satisfies (3.1). Corollary 3.1 implies that it is sufficient to check the condition
(3.1) only for ξ = (ξ1, ξ1) ∈ K1 which satisfy the equality (3.4). Therefore define the
polynomial K(ξ1, ξ2) as follows:

K(ξ1, ξ2) :=
∣∣s(ei2ξ1)∣∣2 − b(1

2
− c

1 + c2
cos[(ν − 2k)ξ1 − ξ2]

)
,

where b > 0, c ∈ (0, 1). As we see,

K(ξ1, ξ2) =
bc

1 + c2
(1 + cos[(ν − 2k)ξ1 − ξ2]) +

4

n2

[
n(1− c)

√
b√

2(1 + c2)
− 1

]
sin2 ξ1.

Since n ∈ N is large enough the inequalities bc
1+c2 > 0, n(1−c)

√
b√

2(1+c2)
− 1 > 0 hold.

This shows that if K(ξ1, ξ2) = 0 for some ξ = (ξ1, ξ1) ∈ K1, then we have
cos[(ν − 2k)ξ1 − ξ2] = −1, sin2 ξ1 = 0 which gives us immediately ξ1 = 0 and
ξ2 = π + 2jπ, j ∈ Z. Applying (3.2) for ξ1 = 0, ξ2 = π + 2jπ we obtain

m(0, π + 2jπ) = m(0, π) = l(1)[(1− c)s(1) + (1 + c)q(1)] =
1− c2

1 + c2
6= 0,

where c ∈ (0, 1). As we mentioned before, the last inequality implies that Cohen’s
criterion is satisfied.

The next theorem is a summary of the above construction.
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Theorem 3.2. Let A, B, G be polynomials defined as follows:

(i) zνA(z−1) = s(z2)l(z), (ii) G(z) = q(z2)l(−z),
(iii) B(z) = s(z−2)p(z2)l(−z)− zνq(z2)p(z−2)l(z−1),

where p(z2) = cz2k, l(z) = [2(1 + c2)b]−
1
2 , q(z2) = z2−1

n + (1−c)
√
b√

2(1+c2)
, k ∈ N, b, c ∈ R,

b > 0, c ∈ (0, 1) and n ∈ N is large enough, that is the equation

|s(z2)|2 = b− |q(z2)|2 ≥ 0, |z| = 1,

defines some polynomial s with s(1) = (1+c)
√
b√

2(1+c2)
. Then the polynomial m(ξ1, ξ2) =

M(e−iξ1 , e−iξ2), where M is the three-row coefficient mask given by (2.2), generates
the nonseparable compactly supported wavelet ψ associated with a multiresolution

analysis for the dilation matrix A =

[
0 2
1 0

]
.

Now we are going to give an explicit examples of low-pass filters generating nonsep-
arable compactly supported wavelets. For that purpose we set n = 1 and b = 2(1+c2)
in Theorem 3.2. In this case it is easy to solve the equation

Ps(z2) = b− Pq(z2),

where q(z2) = z2 − c. Namely the polynomial s in the above theorem can be chosen
in two ways, s1(z2) = z2+c and s2(z2) = cz2+1. To get some parametrized family of
low-pass filters m from Theorem 3.2 assume the possibility that s(z2) = z2 + c. Since
l(z) = 1

2(1+c2) we can compute explicitly coefficients of m. We consider the example,
where ν = 3 and k = 2. This follows that nonzero coefficients c(m,n) take the form:

c(1,0) =
1

2(1 + c2)
, c(3,0) =

c

2(1 + c2)
, c(1,1) = −

c

2(1 + c2)
, c(−1,1) =

c2

2(1 + c2)
,

c(2,1) =
c

2(1 + c2)
, c(4,1) =

c2

2(1 + c2)
, c(2,2) =

1

2(1 + c2)
, c(0,2) = −

c

2(1 + c2)
,

where c ∈ (0, 1). The consequence of previous assumptions is, that B contains the
negative power of z. Nevertheless this example shows that Theorem 3.2 is valid in
situations when A, B or G is a Laurent polynomial. The plot of the corresponding
scaling function ϕ for c = 0.5 was depicted in Figure 1.

It is known that in this case the support of every scaling function is contained
in some compact set Q = {x ∈ R2 : x =

∑∞
j=1A

−jsj for sj ∈ S}, where
S = {(m,n) ∈ Z2 : c(m,n) 6= 0}. Obviously S is independent of c, that is
S = {(1, 0), (3, 0), (1, 1), (−1, 1), (2, 1), (4, 1), (2, 2), (0, 2)} which gives us the
relation supp ϕ ⊂ Q for every c ∈ (0, 1) and Q is unique.

To approximate the set Q we can use a sequence (QN )N=0,1,... of compact sets
defined by the formula

QN+1 =
⋃
s∈S

A−1(QN + s) for N = 0, 1, . . . ,
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where Q0 can be any compact set in R2. Since (QN ) is convergent to Q [13], we
conclude that supp ϕ ⊂ [−1, 7] × [−1, 6], where ϕ represents any scaling function
constructed for c ∈ (0, 1). It can be seen in Figure 2 which shows the good approx-
imation of set Q obtained by means of the sequence (QN ). Obviously for a given
scaling function ϕ we are able to construct its associated wavelet ψ. For that purpose
it is sufficient to apply the following equation

ψ(x) =
∑
n∈Z2

dnϕ(Ax− n),

where dn = (−1)n1ce−n, n = (n1, n2), e = (1, 0) [14]. To give at least one example
of such wavelet we consider again the case c = 0.5. Therefore the scaling function ϕ
from Figure 1 has the corresponding wavelet whose plot was shown in Figure 3.

Fig. 1. A scaling function constructed by ν = 3, k = 2 and c = 0.5

Fig. 2. The set QN for S = {(1, 0), (3, 0), (1, 1), (−1, 1), (2, 1), (4, 1), (2, 2), (0, 2)} and
N = 5. Computation were done with Q0 =

[
− 1

2
, 1
2

]2
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Fig. 3. A nonseparable compactly supported wavelet associated
with a scaling function ϕ by ν = 3, k = 2 and c = 0.5

Acknowledgments
The author thanks the referees for their valuable suggestions. The plots were done
using Mathematica. This work was supported by National Science Centre grant No.
N N201 610240 for years 2011–2013.

REFERENCES

[1] A. Ayache, Construction of nonseparable dyadic compactly supported orthonormal
wavelet bases for L2(R2) of arbitrarily high regularity, Rev. Mat. Iberoamericana 15
(1999), 37–58.

[2] A. Ayache, Some methods for constructing nonseparable, orthonormal, compactly sup-
ported wavelet bases, Appl. Comput. Harmon. Anal. 10 (2001), 99–111.

[3] E. Belogay, Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in R2, SIAM
J. Math. Anal. 30 (1999), 678–697.

[4] M. Bownik, Tight frames of multidimensional wavelets, J. Fourier Anal. Appl. 3 (1997),
525–542.

[5] Q.-J. Chen, X.-G. Qu, Characteristics of a class of vector-valued non-separable
higher-dimensional wavelet packet bases, Chaos Solitons Fractals 41 (2009) 4,
1676–1683.

[6] A. Cohen, I. Daubechies, Nonseparable bidimensional wavelet bases, Rev. Mat.
Iberoamericana 9 (1993), 51–137.

[7] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl.
Math. 41 (1988), 909–996.

[8] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Math.,
Philadelphia 1992.



Some generalized method. . . 235

[9] K. Gröchenig, W. Madych,Multiresolution analysis, Haar bases, and self-similar tilings,
IEEE Trans. Inform. Theory 38 (1992), 558–568.

[10] J. Kovačević, M.A. Vetterli, Nonseparable two- and three- dimensional wavelets, IEEE
Trans. Signal Process. 43 (1995) 5, 1269–1272.

[11] J. Lagarias, Y. Wang, Orthogonality criteria for compactly supported refinable functions
and refinable function vectors, J. Fourier Anal. Appl. 6 (2000) 2, 153–170.

[12] B. Liu, J. Peng,Multi-spectral image fusion method based on two channels non-separable
wavelets, Sci. China Ser. F. 51 (2008) 12, 2022–2032.

[13] W.R. Madych, Some elementary properties of multiresolution analyses of L2(Rn), [in:]
A Tutorial in Theory and Applications, C.K. Chui, ed., Academic Press, 1992, 259–277.

[14] S. Mallat, Multiresolution analysis and wavelets, Trans. Amer. Math. Soc. 315 (1989),
69–88.

[15] C.-Y. Wang, Z.-X. Hou, A.-P. Yang, Binary tree image coding algorithm based on
non-separable wavelet transform via lifting scheme, Int. J. Wavelets Multiresolut. Inf.
Process. 6 (2008) 5, 761–775.

[16] P. Wojtaszczyk, Teoria falek [Wavelets Theory ], PWN, Warszawa, 2000 [in Polish].

[17] J. Zhang, A comparative study of non-separable wavelet and tensor-product wavelet in
image compression, CMES Comput. Model. Eng. Sci. 22 (2007) 2, 91–96.

Wojciech Banaś
wbanas@wms.mat.agh.edu.pl

AGH University of Science and Technology
Faculty of Applied Mathematics
al. A. Mickiewicza 30, 30-059 Krakow, Poland

Jagiellonian University
Faculty of Mathematics and Computer Science
ul. Łojasiewicza 6, 30-348 Krakow, Poland

Received: November 22, 2011.
Revised: August 16, 2012.
Accepted: September 13, 2012.


