PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solvability of sequence spaces equations of the from (Ea)Δ + Fx = Fb

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Given any sequence a = (an)n≥1 of positive real numbers and any set E of complex sequences, we write Ea for the set of all sequences y = (yn)n≥1 such that y/a = (yn/an)>)n≥1 Є E; in particular, sa(c) denotes the set of all sequences y such that y/a converges. For any linear space F of sequences, we have Fx = Fb if and only if x/b and b/x Є M (F, F). The question is: what happens when we consider the perturbed equation Ɛ + Fx = Fb where Ɛ is a special linear space of sequences? In this paper we deal with the perturbed sequence spaces equations (SSE), defined by (Ea)Δ + sx(c) = sb(c) where E = c0, or lp, (p > 1) and Δ is the operator of the first difference defined by Δny = yn - yn-1 for all n ≥ 1 with the convention y>sub>0 = 0. For E = c0 the previous perturbed equation consists in determining the set of all positive sequences x = (xn)n that satisfy the next statement. The condition yn/bn → L1 holds if and only if there are two sequences u, v with y = u + v such that Δnu/an → 0 and vn/xn → L2 (n → ∞) for all y and for some scalars L1 and L2. Then we deal with the resolution of the equation (Ea)Δ + sx0 = sb>0 for E = c, or s1, and give applications to particular classes of (SSE).
Rocznik
Tom
Strony
109--131
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • IUT du Havre 76610 Le Havre, France
Bibliografia
  • [1] de Malafosse B., On some BK space, Int. J. Math. Math. Sci., 28(2003), 1783-1801.
  • [2] de Malafosse B., On the Banach algebra ẞ(lp(α)), Int. J. Math. Math. Sci., 60(2004), 3187-3203.
  • [3] de Malafosse B., Sum of sequence spaces and matrix transformations, Acta Math. Hung., 113(3)(2006), 289-313.
  • [4] de Malafosse B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators, Mat. Vesnik, 54(1)(2012), 39-52.
  • [5] de Malafosse B., Applications of the summability theory to the solvability of certain sequence spaces equations with operators of the form B(r, s), Commun. Math. Anal., 13(1)(2012), 35-53.
  • [6] de Malafosse B., Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math., 46(2)(2013), 299-314.
  • [7] de Malafosse B., Solvability of sequence spaces equations using entire and analytic sequences and applications, J. Ind. Math. Soc., 81(1-2)(2014), 97-114.
  • [8] de Malafosse B., Solvability of certain sequence spaces equations with operators, Novi Sad. J. Math., 44(1)(2014), 9-20.
  • [9] de Malafosse B., Malkowsky E., On the solvability of certain (SSIE) with operators of the form B(r, s), Math. J. Okayama. Univ., 56(2014), 179-198.
  • [10] de Malafosse B., Malkowsky E., On sequence spaces equations using spaces of strongly bounded and summable sequences by the Cesaro method, Antartica J. Math., 10(6)(2013), 589-609.
  • [11] de Malafosse B., Rakočević V., Matrix transformations and sequence spaces equations, Banach J. Math. Anal., 7(2)(2013), 1-14.
  • [12] Farés A., de Malafosse B., Sequence spaces equations and application to matrix transformations, Int. Math. Forum, 3(19)(2008), 911-927.
  • [13] Maddox I.J., Infinite Matrices of Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
  • [14] Malkowsky E., Linear operators between some matrix domains, Rend. del Circ. Mat. di Palermo. Serie II, 68(2002), 641-650.
  • [15] Malkowsky E., Banach algebras of matrix transformations between spaces of strongly bounded and sommable sequences, Adv. Dyn. Syst. Appl., 6(1) (2011), 241-250.
  • [16] Malkowsky E., Rakočević V., An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik Radova, Matematicki institut SANU, 9(17)(2000), 143-243.
  • [17] Wilansky A., Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b2dd702-7bee-448a-8a64-1c5928b52eca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.