PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Image Correlation and nanoindentation in evaluation of material parameters of cancellous bone microstructure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Purpose of this paper is to present the possibilities of the application of the two methods: Digital Image Correlation and nanoindentation in porous bone tissues testing. Firstly, as a tool in the evaluation process of material parameters for porous microstructures, such as bone tissues or other foams and, secondly, as validation and verification tools for finite element analysis of bone or foams structures. Those methods are helpful when the high accuracy of the mechanical parameters of porous microstructures is required. Design/methodology/approach: Two methods: Digital Image Correlation (DIC) and nanoindentation are used as an efficient approach in the evaluation process of material parameters or constitutive relationship of porous structures like bone tissues. Digital image correlation enlarges the accuracy of classical mechanical tests and the nanoindentation allows to look inside the microstructure. Findings: The proposed methods were found to be effective in experimental testing and material parameters evaluation process of some special materials. Among them are porous structures, such as bone tissue. Additionally, the DIC is an excellent tool for finite element model validation and results verification. Practical implications: The presented method based on the combination of the Digital Image Correlation and nanoindentation presents new possibilities in material testing fields, material behavior and parameters evaluation. They have great advantages, among others, in the field of testing of porous bone structure or determining the mechanical parameters of bone tissue. Originality/value: The paper presents methods for testing the complicated porous bone structures: evaluating mechanical behavior of the whole structure and evaluating mechanical properties of the single element of the structure. The mechanical parameters of human cancellous bone structures are presented as the preliminary research results.
Rocznik
Strony
10--16
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Institute of Computational Mechanics and Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Precision Mechanics, ul. Duchnicka 3, 01-796, Warszawa, Poland
autor
  • Institute of Precision Mechanics, ul. Duchnicka 3, 01-796, Warszawa, Poland
autor
  • Institute of Computational Mechanics and Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hieratical structure of bone, Medical Engineering & Physics 20 (1998) 92-102.
  • [2] R.B. Ashman, J.Y. Rho, Elastic modulus of trabecular bone material. Journal of Biomechanics 21 (1988) 77- 81.
  • [3] Y.H. An, R.A. Draughn, Mechanical testing of bone and the bone-implant interface. CRC Press, Boca Raton, USA, 2000.
  • [4] M. Demiral M., A. Abdel-Wahab, V. Silberschmidt, A numerical study on indentation properties of cortical bone tissue, Influence of anisotropy, Acta of Bioengineering and Biomechanics 17/2 (2015) 3-14.
  • [5] Ł. Cyganik., M. Binkowski, G. Kokot, T. Rusin, P. Popik, F. Bolechala., R. Nowak, Z. Wróbel, A John, Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials 36, (2014) 120-134.
  • [6] G. Kokot, evaluation of bone tissues mechanical properties using digital image correlation, nanoindentation and numerical simulations, Publishing of Silesian University of Technology, 2013 (in Polish).
  • [7] J. Nemecek: Nanoindentation in material science, Intech, 2012.
  • [8] C.E. Hoffler, X.E. Guo, P.K. Zysset, S.A. Goldstein, An application of nanoindentation technique to measure bone tissue lamellae properties. Journal of Biomechanics Enginnering 127/7 (2005) 1046-1053.
  • [9] G. Kokot, M. Binkowski, A. John, B. Gzik-Zroska: Advanced mechanical testing methods in determining bone material parameters. Mechanika, Proceedings of 17th International Conference, Kaunas, 2012, 139- 143.
  • [10] W.C. Olivier, G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7/6 (1992) 1564-1583.
  • [11] M. Pawlikowski, K. Barcz, Non-linear viscoelastic constitutive model for bovine cortical bone tissue, Biocybernetics and biomedical engineering 36 (2016) 491-498.
  • [12] D. Christen, A. Levchuk, S. Schor, P. Schneider, S.K. Boyd, A. Müller, Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage, Journal of the Mechanical Behavior of Biomedical Materials 8 (2012) 184-193.
  • [13] P. Sztefek M. Vanleene, R. Olsson, R. Collinson, A.A. Pitsillides, S. Shefelbine, Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia, Journal of Biomechanics 43 (2010) 599-605.
  • [14] A. Makuch, K. Skalski, M. Pawlikowski, The influence of the cumulated deformation energy in the measurement by the DSI method on the selected mechanical properties of bone tissues, Acta of Bioengineering and Biomechanics (2016).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b260b92-362c-4178-b334-9ab15a129634
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.