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Abstract 

In this study the in plane flexural vibration of a thick ring interacting with Winkler foundation is analysed on 
the basis of the analytical and numerical method. The effect of rotary inertia and shear deformation is included. 
The normal frequencies and natural mode shapes of the system vibration are determined. Achieved results are 
discussed and compared with an experimental data. FE models are formulated by using ANSYS code. 
 
Keywords: in–plane vibration, Timoshenko’s theory, thick ring with foundation 

1. Introduction 

The problems of in–plane flexural vibration of circular rings with wheel–plate as an 
elastic foundation find application in several practical problems [6]. The fundamental 
circular rings vibration theory is presented in [5]. In the article [6] authors analyse free 
vibration of a ring gear by using thin ring theory. Free vibration of Timoshenko beam 
attached to linear elastic foundation are investigated in the paper [1]. The introductory 
studies related to the systems of the rings with wheel–plate as the elastic foundation are 
conducted in [3, 4]. In paper [2] the special three–parameter elastic foundation is pro-
posed. In above paper the free in–plane flexural vibration of a circular ring with wheel–
plate as a special three–parameter elastic foundation is analyzed using the classical thick 
ring theory, and the finite element (FE) technique. The procedure of determining 
the substitute mass density of a ring with massless foundation is presented. Obtained 
results of calculation are discussed and compared with experimental data. Experimental 
investigation are conducted by using two objects with the arbitrary chosen geometry. 

2. Theoretical formulation 

The mechanical model of the system under study consists of circular ring with wheel–
plate as a special three–parameter, linear, elastic foundation. It is assumed that ring is 
homogeneous, perfectly elastic and it has rectangular, and constant cross–sectional area. 
It is additionally assumed that the centerline of the ring has radius R and an element of 
the ring, fixed by angle θ, displaces in the radial and circumferential direction, respec-
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tively (see Fig. 1). The small displacements in these directions are denoted as u(θ,t) and 
w(θ,t), respectively, and t is time. According with the theory, discussed in [2], the foun-
dation is represented by the special three–parameter Winkler model. The coefficients kf, 
kp and kS represent the radial and the tangential stiffness per length unit, and the ring 
cross-section angle rotation stiffness modulus, respectively. 
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Figure 1. Vibrating system under study 

Making use of the classical theory of vibrating thick rings [5], the partial differential 
equations of motion for the free in–plane flexural vibration can be combined into an only 
one equation in terms of the radial deflection u(θ,t) as 
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where E denotes Young’s modulus of elasticity, G is the Kirhoff modulus, I1 is the area 
moment of inertia of the rim cross section, ρ is the mass density, A is the cross section 
area, k is the shear correction factor. The general solution of equation (1) is assumed to 
be harmonic, i.e. 

 ( ) ( ) tUtu ωθθ ie=,  (2) 
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where ω is the natural frequency and 1i −=  is the imaginary unit. Substituting solu-
tion (2) into equation (1) gives the following expression 
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where 
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The solution of equation (3) is assumed in the form 

 ( ) ( )∑
=

+=
3

1

sin
j

jnjn nCU ϕθθ ,    K,3,2=n  (5) 

where Cjn and ϕjn are constants. When equation (5) is substituted into equation (3), it 
yields the following frequency equation. 
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Equation (6) is a quadratic equation in ωn
2 and hence two frequency values are associat-

ed with each value of n. The smaller value of ωn
2 corresponds to the flexural mode, and 

the higher value corresponds to the thickness–shear mode. In equation (6) n must be 
an integer with a value greater than 1. 

3. The finite element models 

In this section the FE models of the system under consideration are formulated to discre-
tize the continuous model given by the equation (1). To find the eigenpairs (eigenvalue, 
eigenvector) related to the natural frequencies and natural mode shapes of the ring with 
elastic foundation, the block Lanczos method is employed [5]. The essential problem of 
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this section is prepared the FE model of the system with proper value of the ring substi-
tute mass density ρz and massless elastic foundation, respectively. Two objects are con-
sidered. Analysed systems have the geometry as it is shown in Figure 2. For each object, 
the FE model is realized as follows. The ring part is modeled as the solid body and 
the foundation part is modeled as the massles solid body. The ten node tetrahedral ele-
ment (solid187) with three degrees of freedom in each node is used to solve the problem. 
For each case, the proper value of the ring substitute mass density ρz is selected during 
calculations to minimise the frequency error defined by [2, 3] 

 ( ) %100⋅−= c
n

c
n

f
nn ωωωε  (7) 

where ωn
f is the natural frequencies of the model and ωn

c is the the natural frequencies of 
the object, respectively. 
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Figure 2. (a) geometrical dimensions, (b) model of the system 

The prepared models include 97404 (for the first object) and 143760 (for the second 
object) solid elements, respectively. 

4. Numerical analysis 

Numerical analysis results of the circular ring with wheel–plate free vibration are ob-
tained using the models suggested earlier. For all results presented here, the first seven 
natural frequencies and mode shapes are discussed. 

Table 1. Parameters characterizing the systems of rings with foundation 

No. of 
object 

dz 
[m] 

dw 
[m] 

h 
[m] 

ρ 
[kg/m3] 

R 
[m] 

d1 
[m] 

lr 
[m] 

lw 
[m] 

E 
[Pa] ν 

1 0.191 0.159 0.016 7.85⋅103 
0.0875 0.02 0.008 0.002 2.1⋅1011 0.28 

2 0.203 0.147 0.028 7.85⋅103 
 

Table 1 displays the parameters characterizing the objects under investigation. In this 
table, h is the depth of the ring; ν is the Poisson ratio and the rest of geometrical dimen-
sions are defined as shown in Figure 2. At first the computations are conducted to evalu-
ate the ring substitute mass density ρz of the FE models related to the corresponding 
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objects. Satisfactory results are obtained for the following values of ρz. So, for the FE 
model related to the first object ρz = 9.8⋅103 [kg/m3] and for the FE model referred to 
the second object ρz = 9.17⋅103 [kg/m3]. For both cases, the same values of ρz are includ-
ed in the analytical solutions. Moreover the proper values of stiffness modulus kf, kp and 
kS in the corresponding analytical models are selected during numerical simulations. 
The results of calculation of the natural frequencies are shown in Table 2. 

Table 2. Results of computation related to the systems 

 n 2 3 4 5 6 7 8 
No. kf 

[N/m2] 
kp 

[N/m2] 
kS  

[N/m] 
natural frequencies of the considered models ωn [Hz] (analytical solutions) 

1 2.65⋅109 6⋅107 3.6⋅107 8747 12939 17243 21582 25944 30328 34734 
2 1.2⋅109 6⋅107 8.85⋅107 7065 12189 17158 22033 26865 31682 36500 

natural frequencies of the considered models ωn [Hz] (FE solutions) 
1 – – – 8903 13296 16796 20277 23931 27806 31898 
2 – – – 7363.4 11786 15980 20439 25142 30012 34982 

 

In the Figure 3 two mode shapes comes from the FE model of the first object are dis-
played. 
 

                      
Figure 3. Mode shapes related to the following frequencies:(a) ω2, (b) ω3 (FE solution) 

5. Experimental verification 

In this section the results related to the experimental verification of the considered ana-
lytical and numerical models are discussed. LMS measurement environment is used in 
the experimental investigation. The measuring set consisted of the PCB model 086C03 
type modal hammer equipped with a gauging point made of steel, accelerometer PCB 
model 353B18, LMS SCADA data acquisition system, and SCM-V4E type measuring 
module  supported by LMS Test.Lab software. The experimental investigation is con-
ducted to identify natural frequencies and corresponding mode shapes related to the in–
plane flexural vibration of the considered objects. As mentioned earlier, for the meas-
urement experiment, two objects with the geometry shown in Figure 2 and Table 1 are 
made. The values of the excited natural frequencies are shown in Table 3. These values 

b) a) 
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are compared with the values of natural frequencies from the FE and analytical models, 
respectively. In the same Table the values of the frequency error related to the discussed 
models are presented. Achieved results are satisfactory albeit, the best fit is obtained for 
the analytical model related to the first object. 

Table 3. Results of verifications of the systems 

n 2 3 4 5 6 7 8 
No. of models 

natural frequencies of the considered objects ωn [Hz] (experimental data) 
1 8660 12943.8 16802.5 20618.1 25211.9 29550.6 34155.6 
2 7207.5 11537.5 16058.8 20933.8 26278.8 31647.5 37106.3 

frequency error εn [%] (comparison of the analytical solutions with the experimental data) 
1 1.01 -0.04 2.62 4.68 2.9 2.63 1.69 
2 -1.98 5.65 6.84 5.25 2.23 0.11 -1.63 
frequency error εn [%] (comparison of the FE solutions with the experimental data) 
1 2.81 2.72 -0.04 -1.65 -5.08 -5.9 -6.61 
2 2.16 2.15 -0.49 -2.36 -4.33 -5.17 -5.73 

6. Conclusions 

Based on the classical theory of vibrating rings, a comprehensive study of the free in–
plane flexural vibration analysis of thick rings with wheel–plate as a three–parameter 
Winkler elastic foundation is investigated. The separation of variables method is applied 
to solve the eigenvalue problem. Obtained analytical solutions are compared with 
the corresponding FE solution results. Presented in the paper theoretical and numerical 
investigation, are verified successfully during experimental studies. 
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